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Logging practices have been extensively investigated to assist developers in writing appropriate logging
statements for documenting software behaviors. Although numerous automatic logging approaches have been
proposed, their performance remains unsatisfactory due to the constraint of the single-method input, without
informative programming context outside the method. Specifically, we identify three inherent limitations with
single-method context: limited static scope of logging statements, inconsistent logging styles, and missing
type information of logging variables.

To tackle these limitations, we propose SCLogger, the first contextualized logging statement generation
approach with inter-method static contexts. First, SCLogger extracts inter-method contexts with static analysis
to construct the contextualized prompt for language models to generate a tentative logging statement. The
contextualized prompt consists of an extended static scope and sampled similar methods, ordered by the
chain-of-thought (COT) strategy. Second, SCLogger refines the access of logging variables by formulating a
new refinement prompt for language models, which incorporates detailed type information of variables in the
tentative logging statement.

The evaluation results show that SCLogger surpasses the state-of-the-art approach by 8.7% in logging
position accuracy, 32.1% in level accuracy, 19.6% in variable precision, and 138.4% in text BLEU-4 score.
Furthermore, SCLogger consistently boosts the performance of logging statement generation across a range
of large language models, thereby showcasing the generalizability of this approach.
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1 INTRODUCTION

Logging practices have been widely studied since logs provide rich resources for software debugging
andmaintenance [12, 36, 62, 63]. A logging statement is typically comprised of three components [24,
25]: logging level, logging variables and logging text. The following shows an example of logging
statement, where the terms “info”, “service”, and “Entry to state for” represent the logging level,
logging variable, and logging text, respectively. Furthermore, the logging variable “service” is further
utilized through the invocations of its member functions getServiceState() and getName().
LOG.info("Entry to state " + service.getServiceState() + " for " + service.getName());

To facilitate developers writing logging statements, a number of works are proposed to build
models for automated logging statement generation. These works focus on two aspects of logging,
including generating the logging contents (i.e., what-to-log) and suggesting the logging positions
(i.e., where-to-log) in the code context. A preliminary work [19] pointed out that logging statements
in one project usually share similar patterns so that the logging history can be learned to generate
new logging statements. Motivated by such patterns, existing logging generation approaches
are mostly neural-based and supervised, learning logging patterns from historical data. These
approaches can be further categorized into two types: discriminative and generative.

The idea of the discriminative logging approach is to develop deep-learning models for determin-
ing single component in a logging statement or predicting whether a logging statement should be
contained in a piece of code. For example, DeepLV [37] suggests log levels by building a Bi-LSTM
network to learn syntactic code features and log message features.

However, these discriminative logging models are restrained by their classification nature, which
relies on a pre-defined set of classes and cannot generate complete logging statements. Inspired
by trending language models, recent generative logging models overcome these limitations by
considering the task of logging statement generation as the problem of text generation, which
accepts code snippets and outputs the entire logging statement and its corresponding logging
place. The pioneer logging statement generative approach, LANCE [40], employs a Text-to-Text
Transfer Transformer (T5) mode [47] to inject complete logging statements given a code snippet.
The modern large language models (e.g., GPT-3.5) also show promising results in this task [29].

While generative models are investigated for better performance, their analysis scopes for logging
statement generation are still outstretched:When recommending logging statements for a specific
method, existing approaches solely look into this method (or even a code block inside) while ignoring the
programming context from other methods, not to mention from other files. In particular, these models
simply choose the method-level context (i.e., single-method) while ignoring the critical context
outside the target method for inferring the logging position and corresponding logging statement.
In the following, we present three significant inherent limitations of the previous single-method
context and further discuss them with real-world examples in Sec. 2.
(1) Limited static scope of logging statements. Complete software integrates numerous intercon-

nected methods, each of which serves as a function being called by others. The flow of execution
across various methods offers a comprehensive overview of code functionalities in the entire
system for developers. Relying on a limited single-method context, it is challenging to infer the
logging purpose and thus decrease the logging quality. Apart from execution flow, the available
variables that are beyond the scope of the target method (e.g., attributes in the current class) are also
indispensable. Without knowing the available variables of given method-level context, choosing
logging variables beyond the method scope becomes nearly impossible.
(2) Inconsistent logging styles. In well-maintained software projects, consistent logging styles

are crucial [49–51, 61] for ensuring log readability [32] and the coherence of logs. Such consis-
tency encompasses maintaining coherent logging levels for component lifecycles [37], choosing
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appropriate words [32], and using accordant log text separators. Previous works [8, 9] have shown
similar code can provide additional information on the syntactic structure of logging text and
logging pattern. However, in the method-level context, learning the logging style of a specific
project becomes challenging without in-project adaptation. Relying solely on the general knowl-
edge that pre-trained models acquired during the large-scale pre-training phase poses a challenge
in providing project-specific, consistent logging text and appropriate logging levels for a given
logging statement. This could lead to inconsistencies in the logging style, potentially impacting the
readability [32] and maintainability of the software.
(3) Missing type information of logging variables. Suggesting proper logging variables not only

requires predicting the object variables (i.e., service in the first paragraph) themselves but also
predicting their attributes and member functions (i.e., the getServiceState() member function).
However, variable attributes and member function declaration are usually defined within the class,
which stays out of the target method context. Existing work [38, 40] only focus on the inside
content of a method while never covering the detailed variable type information from the outside.
This type information, if present, could provide explicit definitions for the attributes and member
functions of the variables. Without such information, the logging models may mistakenly invoke
non-existent member functions and misuse variables, which will further lead to compilation errors
and software bugs.
Our Work. To tackle these limitations, we propose SCLogger, the first logging statement

generation approach powered by inter-method Static Contexts. SCLogger analyzes inter-method
programming contexts for logging statement generation with four phases, including static scope
extension, logging style adaption, contextualized prompt construction, and logging variable re-
finement. In the static scope extension phase, SCLogger extends the static scope of the given
method by constructing the function invocation relationships, deriving the execution paths con-
taining logging statements, as well as collecting available variables for the current method, such
as class member variables and inherited variables, as the logging variable candidates. During this
phase, the limitation of limited static scope is mitigated. In the logging style adaption phase,
SCLogger adapts the idea of the in-context learning (ICL) strategy to select intra-project similar
examples demonstrating the logging styles and logging patterns of the current project, which
address the issue of inconsistent logging style. In the contextualized prompt construction phase,
SCLogger translates the inference steps of logging statement generation into a chain-of-thought
(COT) prompt. The context-aware code knowledge generated by the previous two steps, along with
the COT prompt, is put together as a contextualized prompt. With the constructed contextualized
prompt, SCLogger then invokes a large language model to generate the required logging statement
for the given target method. In the final phase, i.e., logging variable refinement, SCLogger further
refines the usage of logging variables. It provides comprehensive type definitions for logging
variables that were generated in the third phase. This allows SCLogger to self-refine and correct
the variable usage, ensuring syntactical correctness of the generated logging statement. This phase
tackles the limitation of missing type information.
Following the previous works [8, 9], we conduct a comprehensive evaluation on ten open-

source Java projects from different domains. The results show that SCLogger achieves the best
performance over all metrics in both deciding logging location (i.e., where-to-log) and generating
logging statement content (i.e., what-to-log). More specifically, SCLogger outperforms the state-of-
the-art approach by 8.7% in logging location accuracy, 32.1% in logging level accuracy, 19.6% in
logging variable precision, and 138.4% in logging text BLEU-4 score, respectively.
Moreover, SCLogger consistently enhances the performance of logging statement generation

models with various backbone large language models, thus demonstrating its generalizability.
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protected void logError(Throwable e) {
Logger log = LoggerFactory.getLogger();
log.error("Could not stop service: " + service + ". Reason: " + e, e);

}
+

public void onException(Object owner, 
Throwable e) {
    logError(e);
    if (firstException == null) {
        firstException = e;
    }
}

public void stop(Service service) {
this.service = service;
    try {
        if (service != null) {
            service.stop();
        }
    } catch (Exception e) {
        onException(service, e);
    }
}

Activemq/util/ServiceStopper.java

InvocationInvocation

Fig. 1. Motivating example 1. The origin logging statement is highlighted in the green area while the invocation

points are highlighted in the orange area.

Besides, we explore the individual contribution of each phase and provide the reasoning for the
improvements brought by our approach.

This paper’s contributions are summarized as follows:
• To the best of our knowledge, we propose the first contextualized logging statement generation
approach named SCLogger. With analyzed static context, SCLogger addresses the limitations
of current method-level approaches with limited context.

• We propose a novel prompt structure to incorporate static context of code into large language
models, which can be generalized to various language models for future improvement.

• We conduct the comprehensive evaluation of SCLogger on public logging datasets. The results
demonstrate the effectiveness of SCLogger and the adaptability of SCLogger with different
backbone models.

• The source code of SCLogger is publicly available at https://github.com/YichenLi00/SCLogger
to benefit both developers and researchers.

2 MOTIVATING STUDY

Logging statement automation has been a longstanding area in the domain of software development
and maintenance [20], since high-quality logging statements can precisely describe system activities
and ease the burden for maintainers to diagnose system anomaly behaviors. A wide range of
approaches have been proposed to automatically recommend proper logging points [33, 40, 65] or
generate effective logging statements [8, 9, 19, 37, 40] for developers.

However, we discover that existing studies contain the same limitation of only exploiting single-
method information for automatic logging, missing the inter-method contexts. In fact, since methods
in software are interrelated, the programming context across different methods plays a vital role in
understanding logging purposes and making logging suggestions accordingly. Intuitively, if the
variable is defined outside a certain method, the developer can only log this variable properly once
he/she reads the outside context. In this section, we perform a motivating study to illuminate the
need for a more context-aware approach. In particular, we present real-world cases to illustrate
limitations introduced by using a single-method context, that is, limited static scope, inconsistent
logging style, and missing type information of variables.

2.1 Limited static scope

Modern software consists of a great number of methods, each of which is responsible for small func-
tionalities. Single methods are often short, and their content is insufficiently informative for logging
generation models to grasp the logging purpose. The static profile from other methods, including
invocations, subsequent logs in execution order, and available variables, should be expanded within
the current static scope. This additional context can be instrumental in understanding system
behavior for logging purposes.
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We exhibit Fig. 1 as an example from the ActiveMQ project to illustrate the significance of static
scope. In this example, the logError method, which consists of two lines, is expected to log the
error information for a certain error. Given only the method name and a single line of logger
registration, it becomes relatively challenging to predict what kind of error should be logged [62].
However, by tracing the method’s invocation sequence, we discover that logError is called within
the method OnException, which in turn is invoked by the stop method of the ServiceStopper class.
Consequently, such invocations reveal that the purpose of logError method is to record the state
of service stop from stop method. Without the invocation information of the logError method, it
would be nearly impossible to infer the appropriate logging statements for recording such service
stop behavior and record this error. Moreover, the fact that service is also beyond the scope of the
logError method further underscores the limitations of method-level static scope.

Furthermore, many invocation relationships span across different files, and some logs need to be
interpreted within a sequence of logs [5, 12, 22, 31]. Therefore, directly extending context to the file
level may also be insufficient to address the issue of lack of information. To thoroughly understand
the relative functionality of target method in program execution, it is essential to acquire a more
comprehensive and specific context through inter-procedural analysis.

+

public Void execute()
throws IOException, PathExistsException {
LOG.debug("Start copying local file from {} to {}", source, destination);
File sourceFile = callbacks.pathToLocalFile(source);
…

}

hadoop-tools/f3/s3a/impl/CopyFromLocalOperation.java

hadoop-tools/f3/s3a/impl/MkdirOperation.java

hadoop-tools/f3/s3a/impl/DeleteOperation.java

public Boolean execute() throws IOException {
LOG.debug("Start making directory: {}", dir);
…

}

public Boolean execute() throws IOException {
    Path path = status.getPath();

LOG.debug("Start deleting path {}", path, 
recursive);

…
}

Similar Function

Fig. 2. Motivating example 2. The origin logging statement is highlighted in the green area while the logging

statements in the similar methods are highlighted in the orange area.

2.2 Inconsistent logging style

Logging style in software development andmaintenance ismaintainedwith relative consistency [49–
51, 61] in a mature project. Examples of this consistency include maintaining coherent logging levels
for the lifecycle of certain components [37], writing logging statements with similar words [32],
applying the same separators in logging text, and so on. To understand the logging style of the
current project, developers naturally learn from similar logging examples within the project.

Fig. 2 showcases an instance from the Hadoop-AWS toolset within the Hadoop project. The three
execute methods, extracted from MkdirOperation, CopyFromLocalOperation, and DeleteOperation

files, are the primary execution methods that enable various file operations in the S3A filesystem.
These methods serve as similar methods, exhibiting similar logging styles, particularly in terms of
levels and wording. Without similar methods as a reference of logging style, it would be challenging
to infer that such file operations should choose the debug level and use the Start doing text structure.
Furthermore, given only the target function execute, the model has no way of knowing that similar
file operation methods in the project will log Start doing.. at the beginning of the methods before
performing file operations. Hence, missing additional methods as references might cause logging
style inconsistency, which can be mitigated by providing samilar methods from the same project.
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public void stateChanged(Service service) {
log.info("Entry to state "+service.getServiceState()  + " for " + service.getName());

}
+

public interface Service extends Closeable {

public enum STATE {
…
}
…
STATE getServiceState();
…

String getName();
}

Definition
Type Information

hadoop-common/Service/LoggingStateChangeListener.java

hadoop-common/Service/Service.java

Member Function

Fig. 3. Motivating example 3. The origin logging statement is highlighted in the green area while the

corresponding logging variable is highlighted in the orange area.

Project Code

Target Method

Call Graph 
Generation

Log Graph 
Generation

Code 
Slicing

Log 
Slicing

Available Variable 
Analysis

Call Graph 

Log Graph Log Slice 

Code Slice 

Variable List

Logging Style 
Examples

Similar Methods
Sampling

Prompt

Project Code

PHASE I: Static Scope Extension

PHASE II: Logging Style Adaption

PHASE III: Contextualized 
Prompt Construction

PHASE IV: Logging Variable Refinement

1

2

3

4

5

LLM

Initial Output

Type
Info

Refined Output

<Line Number>:  ...
<Statement>: ...

COT

ICL

Fig. 4. The overview workflow of SCLogger.

2.3 Missing type information of logging variables.

Since variables are often defined outside the method (e.g., class attributes for object-oriented
programming languages [62]), the third limitation of the intra-method context for logging is the
missing type information of logging variables. Ignoring such information obstructs logging models
from determining the proper usage of a variable (e.g., properties from a class) even though they
understand the logging purpose.

Fig. 3 showcases an example from the Hadoop project, emphasizing the critical role of variable
type information context within the automated logging process. The primary objective of this
logging statement is to record the state change status of the given service. To this end, it is
essential to invoke the two member functions (i.e., getServiceState() and getName()) from
other classes defined outside the method, which retrieve the defined service state and name,
respectively. Without integrating the Service interface information at Service.java into logging
context, logging models are asked to guess the member functions of service, inevitably impairing
their performance and practicality. The incorrect variable predictions (e.g., devoid invocation) can
further lead to program compilation errors and software bugs.

Insights. The motivating study demonstrates the limitations of method-level context in under-
standing the semantics of the target method, maintaining consistency in the project-specific
logging style, and selecting appropriate logging variables. Hence, we should devise models
equipped with more context-aware code knowledge that does not exist in the target method for
effective logging.
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3 METHODOLOGY

3.1 Overview

First of all, we describe the problem of logging statement generation as follows. Given a method
code as input (i.e., target method), the goal of this task is to predict the logging location and its
corresponding logging statement content. Specifically, the purpose of SCLogger is to predict the
code line number (i.e., location) and generate a complete logging statement accordingly.

We propose SCLogger, a static analysis enhanced contextualized logging statement generation
framework via large language models. Intuitively, simply putting the entire project code into
language models should work, however, such long input can be out of the model’s input limit size
and make the model get lost. As a result, we need a more advanced approach to extract useful
information from the entire project. To this end, SCLogger extracts the logging-related context
surrounding the target method and constructs contextualized prompts, which will be fed into
language models for predicting logging position and generating logging statements. We present
Fig. 4 to illustrate the workflow of SCLogger.

SCLogger takes the target method and its corresponding project code as input. The static scope
extension phase derives inter-method information including code slice, log slice, and variable list.
Code slice is a chain of methods code reflecting the method calling relationship associated with
target methods. Log slice recording the potential subsequent and precedent logs during execution.
The variable list contains all available variables for the target method. Afterwards, the logging style
adaption phase utilizes the in-context learning (ICL) strategy by sampling a small set of similar
methods from the project as logging style examples. Then, the third phase applies the chain-of-
thought (COT) strategy [56] to translate logging inference into a few steps, then combines it with
the context-aware knowledge coming from the two previous phases, to form a contextualized prompt.
This combined prompt is then fed to the large language model (LLM) to get a tentative logging
statement with the corresponding position (i.e., line number). During the final phase, logging
variable refinement, SCLogger constructs a new refinement prompt that contains the detailed type
information of the variable extracted from the tentative result. SCLogger eventually feeds the
new prompt into the LLM and generates the final logging statement with rectified variables. The
example with the contextualized prompt and the refinement prompt is illustrated in Fig. 6.

3.2 Static Scope Extension

The static scope extension phase aims to extract the static context associated with logging that
surrounds the target method. Ultimately, this phase will generate three types of context: the code
slice, the log slice, and the list of available variables.

3.2.1 Code Slice Generation. To enhance the model’s understanding of the target method’s rel-
ative position and functionality within the project, we designed the code-slicing step to extract
the invocation context. The code slicing phase of SCLogger is designed to extract the relevant
invocation methods of target method𝑚𝑡 from the statically generated call graph, which describes
the invocation relationships among methods. To construct a relatively accurate call graph, our
model utilizes a context-sensitive pointer analysis [30] to increase the precision of the call graph,
especially in handling virtual method calls and similar situations.

In particular, the code slicing process identifies the methods that either invoke the target method
or are invoked by the target method within two hops. Here, a single invocation can be considered
as one hop. The position in the call graph corresponds to the node linked with the target method
𝑚𝑡 , as per the invocation details. The graph traversal process follows the graph’s directed edges,
either forward or backward, to extract the preceding and succeeding methods. If there are too many
paths within two hops, we only randomly select one of these invocation paths. As shown in Fig. 5,
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JobSubmitter submitJob

Job submit

JobConf configureJob

Job get

JobSubmitter copyAndConfig Job waitForComplete

Inter-procedural
Analysis

Call Graph

Target 
Method

Log Graph

Log
Target 

Method

Log@4

Log

Log@2

Log@1

Log

Log@5

Code 
Slice

Log 
Slice

Fig. 5. The log slice and code slice example of SCLogger. The target method is highlighted in the red area.

for method get, its method invocations of within two-hop are configureJob, submit and submitJob
The output of code slicing is text descriptions of invocation relationships between the identified
methods, as well as the chain of these method codes (i.e., get, configureJob, submit, and submitJob).

3.2.2 Log Slicing. A single log event, being part of the log sequence, cannot be fully understood in
isolation. The log slicing phase aims at identifying preceding logs and subsequent logs of a given
target method based on a log graph which indicates the log dependency relationships.

(1) Log Graph Construction: To extract both preceding and succeeding logging statements for the
target method, SCLogger constructs log graphs for a given project 𝑝 . This construction process
is guided by the frameworks and ideas presented in previous works [4, 22, 64]. A log graph is
characterized as a directed graph (𝐿, 𝐸) (as shown in Fig. 5), where 𝐿 represents the set of logging
statements which is the node set in graph and 𝐸 represents the edge set, which is composed of
program execution paths. Each logging statement 𝑙 ∈ 𝐿 is obtained through static analysis of
the source code of project 𝑝 with its belonging method𝑚. Consequently, the connected logging
statements in the log graph are causally related with the possible execution order, as they are
derived from the execution paths within the same source code of project 𝑝 .

Specifically, SCLogger extends the framework of previous works [22, 64]. It begins by analyzing
and identifying the set of methods𝑀 ′ ⊆ 𝑀 that contain any logging statement. SCLogger then uses
the call graph for the project 𝑝 described above. For the call graph of project 𝑝 , SCLogger prunes
the methods that do not directly or indirectly invoke any method𝑚 ∈ 𝑀 ′ from the complement
of 𝑀 ′ in 𝑀 . These are referred to as log-irrelevant methods [22]. For the remaining methods,
SCLogger conducts the static execution path analysis [22] for each method. All relationships,
including control flow and method calls, which are also part of the Interprocedural Control Flow
Graph (ICFG), are integrated into the edge set 𝐸. Thus, each edge 𝑒 ∈ 𝐸 represents a potential
execution path from one logging statement to another, which aids in understanding and handling
the dependency relationships among logging statements.
While the log graph provides a comprehensive set of potential executable paths, it includes

certain paths that remain infeasible regardless of the constrains. To refine the log graph and reduce
these infeasible paths, we undertake a preliminary intra-procedural constraint analysis. This process
involves the collation of constraints in a method and the initial filtering out of any paths that
contain unsatisfiable constraints. If a path within a method is determined to be infeasible, all paths
reliant on this infeasible path are subsequently removed. Note that due to the inherent limitations,
some potentially infeasible paths may still remain.
(2) Log Slice Generation: With the log graph, SCLogger generates a log slice that consists of

preceding and succeeding logging statements for the target method𝑚𝑡 . This is accomplished by
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traversing the graph both backward and forward, beginning from the position of the target method
in the log graph. As shown in Fig. 5, log-specific slicing allows SCLogger to capture long-distance
log dependency information within two log hops (which will be beyond two method hops, as some
methods may not contain logs) for the target method, within a greatly reduced and focused context.
This is more targeted than directly incorporating all relevant code into the context according to the
invocation sequence. The position in the log graph refers to the node associated with the target
method𝑚𝑡 according to invoke information and execution information. The process of traversing
the graph involves following the directed edges in the graph, either forward or backward, to identify
the preceding and succeeding logging statements. If an excessive number of nodes exist within two
hops, we simply choose one of these paths from the methods available in the training set.

3.2.3 Scope Variable Analysis. The scope of accessible logging variables for a given method is not
limited to its parameters and local variables. It also encompasses variables that are beyond the class
level, including those inherited from a parent class. Consequently, merely capturing all member
variables in the current file does not yield a comprehensive overview of available variables [62].
We illustrate the details of this phase as follows:

In the context of a target method𝑚𝑡 , we define several sets of variables. 𝑉𝑝 represents the set of
parameters, which are the inputs to the method. 𝑉𝑚 stands for the set of local variables, which are
defined and used only within the method. 𝑉𝑐 is the set of class member variables, which belong to
the class that the method is a part of. 𝑉𝑠 is the set of static variables, which belong to the class as a
whole rather than any specific instance. Lastly, 𝑉𝑖 denotes the set of inherited variables, which are
class member variables that come from the parent class.
The logging process should focus on any variable 𝑣 that belongs to one or more of these sets

(𝑣 ∈ 𝑉𝑝 ∪𝑉𝑚 ∪𝑉𝑐 ∪𝑉𝑠 ∪𝑉𝑖 ) during the execution of𝑚𝑡 [62]. As a result, all these variables need to
be included in the context for selection as potential logging variables and subsequently form the
available variable list.
Note that here, we are not giving the model the detailed type definition for each variable. The

list of available variables primarily includes the variable name and roughly inferred type name. We
will further discuss how we address the further type issue of logging variables in Sec.3.5.

3.3 Logging Practice Adaptation

To align with the logging style of the current project, SCLogger employs the in-context learning
(ICL) strategy, which has proved its effectiveness in code-related tasks [15, 45], to adapt to the
project’s logging style. The in-context learning strategy [11], as its name suggests, allows the
model to learn and adapt to the specific examples of the project, ensuring that the generated
logging statements are in line with the project’s existing style. Specifically, this strategy provides
a few examples sampled from the inter-project training set (with labels, detailed in Sec. 4.1) as
demonstrations of logging style so that SCLogger can learn from these examples to generate
consistent logging statements.
Following previous works [15, 45], we use the BM25 [48] similarity function to select these

examples. The BM25 function is based on the TF-IDF (Term Frequency-Inverse Document Fre-
quency) method. With the code of a target method as input, the BM25 function calculates the term
frequency of each keyword in the query within the examples. It then multiplies this frequency
by the inverse document frequency of the given term. The BM25 similarity score will be higher if
there is a greater relevance between the query and the examples. This score helps SCLogger to
select the most relevant examples from the training set. Specifically, we select the top five examples
from the training set with the highest BM25 similarity scores. The example prompts are combined
with the other prompt to form the complete contextualized prompt, as shown in Fig. 6.
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Please rethink the variable usage with detailed 
type information about <Var>
public interface Service extends Closeable {
public enum STATE {
…
}
STATE getServiceState();
String getName();
}

public void stateChanged(Service service) {
…
}

Example Prompt

Initial Output

LLM

Refined Output

Insert a logging statement to the following code using <API>.
With the format <Line Number>: # <Statement>: #

Java Code:

Instruction:

Let’s think step by step. First, the given method was called 
by <method A>, the code of called <methodB> is.. 
Second, the succeeding and proceeding logs are: <log> 
<log>…
Third, available variables of this method are <var>, <var>..
Finally, keep consistent log style within current project, here 
are logging examples from current project:
<example>:<label>
<example>:<label>
…

Send Refine

Get Detailed Type 

Information of <var> 

<Line Number>: 2
<Statement>: log.info("State Changed to 
" + service.getServiceState() + "for" + 
service.getName());

<Line Number>: 2
<Statement>: log.info(”State Changed to 
service.State()");

1

2

3

4

5

Fig. 6. Contextualized prompt example with logging variable refinement.

3.4 Contextualized Prompt Construction

As shown in Fig 6, SCLogger converts all the context information gathered from static analysis
during the first two phases into chain-of-thought (COT) [56] prompts, which incorporate static
domain knowledge regarding the requirements of a logging statement. The innovative COT ap-
proach, which employs sequential reasoning, guides language models towards generating complex
and specific outputs [45]. This approach allows the model to focus on one aspect of the task at the
time, potentially enhancing the quality of the generated outputs.
Additionally, SCLogger integrates the sampled logging style examples from the second phase

with the In-Context Learning (ICL) strategy into the input prompt with reasoning prompt. It
suggests the model to maintain a style consistent with the logging samples derived from the
current project. By fusing these two components, the initial contextualized prompt is ultimately
constructed.

3.5 Logging Variable Refinement

To address the issue of variable usage within selected variables, an intuitive idea might be to provide
the detailed type information for every variable alongside the available variable list during the first
phase. However, offering the detailed type definition of every available variable within the current
scope is unrealistic and would lead the model into a wild-goose chase.
To tackle this, we employed a two-staged variable type refinement mechanism to determine

the proper usage of logging variables, as shown in Fig. 6. In the first stage, after providing the
model with the contextualized prompt with an available variable list, we let the model conduct
the inference. Then, we extract the logging variable chosen by the model and conduct a thorough
type analysis of that variable to generate the detailed type information extracted from the project,
which is then fed back to the model for reconsideration and self-refinement.

To obtain the detailed type information of a selected logging variable, we performed static
analysis with class definition resolution. Given a variable 𝑣 and target method code𝑚𝑡 within a
project 𝑝 , we first find the type 𝑡 of 𝑣 using with variable type resolving, then acquire its detailed
information of 𝑡 . Resolving the variable’s type within method𝑚𝑡 involves checking the parameter
scope of𝑚𝑡 , local scope within𝑚𝑡 , and the class 𝑐𝑡 where𝑚𝑡 is defined if the variable is a class-level
variable.

After obtaining type 𝑡 , we denote the set of acquired referring class definitions in the project 𝑝
as 𝐷𝑒𝑓 by analyzing imported intra-project packages and the current package. A class definition
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𝑑𝑒 𝑓 ∈ 𝐷𝑒𝑓 is a tuple (𝑡, 𝑀,𝐴), where 𝑡 is the type,𝑀 is the set of member functions, and𝐴 is the set
of attributes. The class definition resolving function 𝑅 : 𝑡 × 𝑝 → (𝑀,𝐴) is then defined as follows:

𝑅(𝑡, 𝑝) = (𝑀,𝐴) if ∃(𝑡 ′, 𝑀,𝐴) ∈ 𝐷𝑒𝑓 such that 𝑡 = 𝑡 ′ (1)
The function 𝑅 takes a type 𝑡 and a project 𝑝 as input and returns the member functions𝑀 and

attributes 𝐴 of the type if there exists a definition (𝑡 ′, 𝑀,𝐴) in 𝐷𝑒𝑓 where 𝑡 = 𝑡 ′.
In the case of inheritance and polymorphism, we traverse the class hierarchy to collect all

relevant member functions and attributes. If the class implements any interfaces, we also consider
the methods declared in these interfaces. For generic classes, we consider all possible concrete types
the generic type can take. This process is repeated recursively until we have a complete picture of
the class’s definition, including its inherited and overridden member functions and attributes.

In conclusion, we extract detailed type information of a variable, including its member functions
and attributes, through variable type resolution and class definition resolution, for refining the
generated logging statement.
The resolved detailed type information will be fed into SCLogger, if the model realizes it has

used the variable type incorrectly (e.g., not using var.getinfo()), it will take this opportunity to
carefully read the logging variable’s information and correct the type error and further method
usage. This allows SCLogger to self-refine and correct the variable usage, ensuring syntactical
correctness of the generated logging statement.

4 EXPERIMENT SETUP

4.1 Subject Projects

Following previous works [8, 9, 19], we evaluate SCLogger on ten open-source Java projects that
span various domains, such as storage, cloud platforms, computation engines. Detailed information
of these projects can be found in Table. 1. The source lines of code (SLOC) for the investigated
projects range from 330K to 2.12M. Each project contains between 1,978 and 15,744 logging state-
ments within 901 to 7,365 methods that contain these statements. Notably, every project boasts
a development history exceeding ten years, which highlights the progression and evolution of
each software system. Note that our decision not to select another generic logging dataset [40]
is based on the fact that it is comprised solely of sampled methods without any supplementary
information such as the associated path or project. This absence of information proves insufficient
for conducting static analysis for obtaining context.
Next, we analyze the invocation of popular logging APIs (i.e., Log4j [1] and Slf4j [17] at the

Abstract Syntactic Tree (AST) level to extract all log statements from the original samples to
complete the datasets: The extracted logging statements were marked with a line number tag
(i.e., <Line Number#>) with corresponding logging statement (i.e., <Statement>: log.info(msg)) to
indicate their position in the initial method and the complete logging statement. These served as
the ground truth labels for their respective methods.

In line with works [8, 9, 19], for each subject project, we randomly split all the methods containing
logging statements into the ratio of train:test=8:2. All sampling and static analysis processes of
SCLogger will not involve any methods in the test set.

4.2 Baselines

We choose LANCE [40], the first and only one-stop logging statement approach based on T5 [47]
and and its updated version, LANCE2.0[39], as our primary baselines, since other appraoches
only focus on certain subtask (i.e., logging level prediction [34, 37]). Code completion models
are also beyond the scope of our baselines, due to their inability to infer the logging position.
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Table 1. Details of the studied projects.

Project Version SLOC # of logging statements # of methods contain logging statements

ActiveMQ 5.16.0 415k 5,352 2,876
Ambari 2.7.5 490k 4150 1,689
Brooklyn 1.0.0 339K 2,937 1,374
Camel 4.0.0 2.12M 9,603 4,460
CloudStack 4.16.11 782k 11,261 3,994
Hadoop 3.3.0 1.7M 15,744 7,365
HBase 2.4.0 912K 8,677 3,526
Hive 3.1.2 1.7M 7,415 2,650
Ignite 2.8.1 1.1M 4,319 2,335
Synapse 3.0.1 330k 1,978 901

Given the progress in the development of Large Language Models (LLMs) and their potential use
in similar development tasks, we also consider several prominent LLMs as baselines, including
GPT-3.5 [41], Davinci [42], GPT-4 [42] and Llama-2-70b [54]. We further choose these models
as the backbone models to demonstrate the generalizability of our approach. For the LLM-based
baselines, we provide five fixed examples for task demonstration. Implementation details can be
seen in Section. 4.4.

We intentionally did not compare SCLogger with approaches that focus on a specific aspect of
what to log (e.g., logging text generation) or current code completionmodels. This is because they are
unable to locate the logging position in a one-stop manner and generate the corresponding logging
statement. Our experimental results have demonstrated that our approach can be generalized
to various backbone models, emphasizing its effectiveness as a generalized strategy instead of a
specific trained model.

4.3 Metrics

Following the previous work[40], we evaluate the effectiveness of SCLogger with respect to two
primary dimensions: where to log and what to log.

4.3.1 Where to log. In line with previous work [40], we employ the metric of Position Accuracy
(PA) to assess the performance of logging position prediction. We argue that the block level might
be overly coarse. In this scenario, we calculate PA as 1 (indicating a successful prediction) if the
distance between the predicted line number and the actual line number is less than or equal to one
line and both predicted and actual line numbers must be within the same block. Otherwise, PA is
calculated as 0 (indicating an unsuccessful prediction).

4.3.2 What to log. Under the what to log category, we evaluate SCLogger in terms of its logging
levels, logging variables, and logging texts following the previous work [29].

(1) Logging levels. We adopt level accuracy (L-ACC) and Average Ordinal Distance Score (AOD)
from previous studies [29, 34, 37] to evaluate logging level predictions. L-ACC represents the
percentage of correctly predicted log levels, while AOD calculates the distance between logging
levels. since different levels are not independent of each other. For example, the error is closer to
warn compared with trace. The formula for AOD is 𝐴𝑂𝐷 =

∑𝑁
𝑖=1 (1−𝐷𝑖𝑠 (𝑎𝑖 ,𝑠𝑖 )/𝑀𝑎𝑥𝐷𝑖𝑠 (𝑎𝑖 ) )

𝑁
, where 𝑁 is

the number of logging statements and𝑀𝑎𝑥𝐷𝑖𝑠 (𝑎𝑖 ) refers to the maximum possible distance of the
actual log level.

(2) Logging variables. We employ Precision, Recall, and F1 to evaluate the predicted set of logging
variables. For each generated logging statement, we denote the variables in the model’s prediction
as 𝑆𝑝 and the variables in the actual logging statement of ground truth as 𝑆𝑔. We calculate the
precision (𝑆𝑝∩𝑆𝑔𝑡

𝑆𝑝
), recall (𝑆𝑝∩𝑆𝑔

𝑆𝑔
), and their harmonic mean (F1=2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 ), and report these
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metrics.Note that predictions that use the same variable as the ground truth with different member
function usages are considered incorrect predictions.

(3) Logging texts.We use BLEU [43] and ROUGE [35] metrics, consistent with previous research [8,
40], to evaluate the quality of the generated logging texts. These metrics compute the similarity
between generated and actual log messages, ranging from 0 to 1. A higher score indicates better
quality. Specifically, we use BLEU-K (𝐾 = {1, 4}) and ROUGE-K (𝐾 = {1, 𝐿}) to compare the overlap
of K-grams.
Note that for practicality, we only calculate the metrics for what-to-log when the logging

position(where-to-log), is predicted correctly. This is because if the logging position is not right,
the purpose and meaning of the log would be incorrect, thus lacking value for further evaluation.

4.4 Implementation

The static analysis part of SCLogger has been implemented using 4,738 lines of Java code, leveraging
both Soot [55] and Eclipse JDT Core [13] for comprehensive Java bytecode and source code analysis.
The experiments of SCLogger and all baselines were conducted on a Linux machine (Ubuntu LTS
18.04) equipped with an Intel Xeon Platinum 8255C Processor (2.50GHz), four NVIDIA A100-80GB
GPUs, and 1TB of RAM.
For GPT-3.5, Davinci and GPT4, we use the public APIs provided by OpenAI[42] with gpt-3.5-

turbo-0301, text-davinci-003 and gpt-4-0314, respectively. We run the Llama2-70b model on our
machine using the Llama version Llama2-70b-chat-hf to infer the results. By default, we set the
hops of log slice and code slice to 2 and give 5 in-project examples in logging style adaption phase.
For baselines, we use 5 fixed examples for task demonstration.

5 EVALUATION RESULTS

5.1 ResearchQuestions

For the evaluation, we consider the following research questions:
• RQ1: How effective is SCLogger compared with existing approaches?
• RQ2: What is the impact of different phases of SCLogger?
• RQ3: How generalizable is SCLogger for different backbone models?
• RQ4: What is the impact of different logging examples?

5.2 RQ1: How effective is SCLogger compared with existing approaches?

To evaluate the effectiveness of SCLogger in logging statement generation task, we conduct a
comprehensive evaluation with comparison to other baselines on the datasets. The evaluation
results are illustrated in Table. 2, where the best results for each metric are marked in bold face.
We analyze the evaluation results from two dimensions: where-to-log and what-to-log.

Table 2. Logging statements generation results from both where-to-log and what-to-log dimensions.

Model Posistion Logging Levels Logging Variables Logging Texts
PA L-ACC AOD Precision Recall F1 BLEU-1 BLEU-4 ROUGE-1 ROUGE-L

LANCE 0.501 0.574 0.763 0.657 0.414 0.508 0.207 0.110 0.179 0.175
LANCE2.0 0.563 0.601 0.807 0.632 0.508 0.563 0.219 0.113 0.275 0.266
Davinci-003 0.307 0.470 0.714 0.626 0.544 0.582 0.267 0.128 0.288 0.295
Llama-2-70b 0.248 0.442 0.682 0.506 0.477 0.490 0.209 0.070 0.218 0.219
GPT-3.5 0.395 0.495 0.727 0.618 0.496 0.550 0.164 0.064 0.176 0.174
GPT-4 0.518 0.562 0.779 0.634 0.611 0.622 0.285 0.138 0.317 0.321

SCLogger 0.612 0.794 0.914 0.758 0.735 0.746 0.493 0.329 0.517 0.509
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Where-to-log. According to the evaluation results, it is clear that SCLogger outperforms all
baselines in logging position prediction. Specifically, SCLogger outperforms the best performing
baseline, LANCE2.0, by 8.7%. Furthermore, despite having five fixed examples as task demonstrations
for Large Language Models (LLMs), only GPT-4 manages to exceed the performance of the domain-
specific baseline, LANCE, which is based on T5 with the considerably smaller size. The performance
of the remaining LLMs on this task underscores the current limitations of these models. Notably,
under the line-level metric, PA, the performance of SCLogger further underscores the effectiveness
in the task of determining where to log.
What-to-log.We compare SCLogger with all baselines in terms of logging levels, logging variables,
and logging texts. Regarding the logging levels, we observe that SCLogger outperforms the best
performing approach by 32.1% and 13.3% for level accuracy and AOD. When considering logging
variable prediction, SCLogger achieves a consistent improvement of 19.6% to 20.3% on prediction
and recall than the best performing baseline. These results demonstrate that that SCLogger,
equipped with domain knowledge of available variables and detailed type information, significantly
outperforms existing methods in predicting logging variables, along with their attributes and
member functions. In terms of logging text generation, SCLogger shows a marked improvement
compared to all baselines. It achieves a BLEU-4 score of 0.386 and a ROUGE-L score of 0.599,
outperforming GPT-4 by 138.4% and 58.6%, respectively. By adopting logging style adaptation and
contextualized strategies, SCLogger can generate logging text that aligns with the current project’s
logging style, both in text structure and wording. This not only improves the overall quality of the
logging text but also highlights the its potential practicality for real-world software development.

Answer to RQ1. By introducing the context information in the prompt design, SCLogger demon-
strates superior performance in both dimensions of where to log and what to log, significantly
outperforms the best baseline.

-

public Void execute()
throws IOException, PathExistsException {
LOG.debug("Start copying local file from {} to {}", source, destination);
File sourceFile = callbacks.pathToLocalFile(source);
…

}

hadoop-tools/f3/s3a/impl/CopyFromLocalOperation.java

Target Method

<Line Number>: 3
<Statement>: log.debug("Copying from local file system: {} 
to {}", source, destination)

<Line Number>: 6
<Statement>: LOG,info("Destination status: {}", destStatus);

-

protected void logError(Throwable e) {
Logger log = LoggerFactory.getLogger();
log.error("Could not stop service: " + service + ". Reason: " + e, e);

}

Activemq/util/ServiceStopper.java

Target Method

<Line Number>: 3
<Statement>: log.error("Could not stop service: " + service 
+ ". Reason: " + e, e);

<Line Number>: 3
<Statement>: log.error("Error occurred", e);

W/O Static Scope Extension

Standard Setting Standard Setting

W/O Logging Style Adaption

(a) Removing the phase of static scope extension.

-

public Void execute()
throws IOException, PathExistsException {
LOG.debug("Start copying local file from {} to {}", source, destination);
File sourceFile = callbacks.pathToLocalFile(source);
…

}

hadoop-tools/f3/s3a/impl/CopyFromLocalOperation.java

Target Method

<Line Number>: 3
<Statement>: log.debug("Copying from local file system: {} 
to {}", source, destination)

<Line Number>: 6
<Statement>: LOG,info("Destination status: {}", destStatus);

-

protected void logError(Throwable e) {
Logger log = LoggerFactory.getLogger();
log.error("Could not stop service: " + service + ". Reason: " + e, e);

}

Activemq/util/ServiceStopper.java

Target Method

<Line Number>: 3
<Statement>: log.error("Could not stop service: " + service 
+ ". Reason: " + e, e);

<Line Number>: 3
<Statement>: log.error("Error occurred", e);

W/O Static Scope Extension

Standard Setting Standard Setting

W/O Logging Style Adaption

(b) Removing the phase of logging style adaption.

Fig. 7. Case study of the ablation study about phase static scope extension and logging static adaption.

5.3 RQ2: What is the impact of different phases of SCLogger?

We conduct an ablation study to investigate the impact of different components within the frame-
work of SCLogger. Specifically, we design three variants of SCLogger by removing the proposed
phases i.e., logging scope extension, logging style adaption and logging variable refinement in
comparison with SCLogger.

, Vol. 1, No. 1, Article . Publication date: March 2024.



Go Static: Contextualized Logging Statement Generation 15

Table 3. Ablation Study of SCLogger.

Ablation Posistion Logging Levels Logging Variables Logging Texts
PA L-ACC AOD Precision Recall F1 BLEU-1 BLEU-4 ROUGE-1 ROUGE-L

SCLogger 0.612 0.794 0.914 0.758 0.735 0.746 0.493 0.329 0.517 0.509
w/o Loging Scope Extension 0.579 0.702 0.858 0.720 0.711 0.716 0.430 0.278 0.468 0.469
w/o Logging Style Adaption 0.549 0.679 0.869 0.752 0.696 0.723 0.354 0.191 0.393 0.386
w/o Logging Variable Refinement 0.614 0.791 0.912 0.708 0.654 0.680 0.483 0.348 0.507 0.503

Table 3 demonstrates the experimental results. The results indicate that without conducting the
static scope extension, the overall performance of SCLogger generally declines across all metrics.
Specifically, there is a decrease of 5.4% in position accuracy (PA), while level accuracy (L-ACC)
and variable precision experience drops of 11.6% and 5.0% respectively. This decline is primarily
due to the misunderstandings of the target method semantics and corresponding logging purpose,
given the limited information available at the method level code. When logging style adaptation
is not conducted, the performance of SCLogger on logging text aspect experiences the most
significant decrease, indicating the importance of providing logging style examples for formulating
text structure and wording. Specifically, for logging text, the performance achieves the BLEU score
from 0.354 to 0.191 and the ROUGE score from 0.393 to 0.386 for the studied projects, which are
28.2% to 41.9% and 24.0% to 24.2% lower than the standard setting, respectively. Additionally, the PA
decreases by 10.3%, indicating that the demonstration of logging style examples can significantly
enhance the performance of identifying logging positions. This also suggests that models can
effectively learn logging patterns from these demonstrated examples. Furthermore, when the phase
of logging variable refinement is omitted, the performance of SCLogger for logging variables
drops obviously (8.8%, reflected by F1), while the performance of other dimensions almost remains
relatively stable (i.e., logging level). This decrease demonstrates the effectiveness of the variable
refinement phase with detailed type information.
Fig. 7 presents two cases (details described in Sec. 2.1 and Sec. 2.2) to illustrate how SCLogger

can be benefited from each phase. The gray line represents the original logging statements. For
instance, in Fig. 7a, without the extended method static scope information, SCLogger failed to
understand the functionality of this method. As a result, SCLogger conservatively inferred a
general error log without realizing that the current method’s purpose is to report the error when
the service cannot be stopped. With the help of extended static scope context (detailed in Sec. 2.1),
SCLogger understand the functionality and available variables of current method, therefore can
generate a more appropriate log recording the certain error. For the example shown in Fig. 7b,
SCLogger cannot locate the logging location for such a method without understanding the logging
pattern of current project. With the knowledge gaining from similar methods (detailed in Sec. 2.2),
SCLogger can pinpoint the appreciate logging position (before the file operation) and generate a
similar structure logging statement. The case presented in Fig. 6 demonstrates the effectiveness of
logging variable refinement. After taking the type information of the variable service, SCLogger
can retrieve the state information and service name by calling the relevant member functions
getServiceState() and gerName(). As a result, a more suitable logging statement is generated, and
the incorrect invocation of getState() is corrected.

Answer to RQ2.While evaluating individual contributions of each phase of SCLogger, the abla-
tion study reveals that removing any component significantly decreases the overall performance
in terms of all the metrics. Thus, each phase individually contributes significantly to the overall
effectiveness of the SCLogger framework.
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Table 4. The performance of SCLogger with different backbone models.

Model Approach Posistion Logging Levels Logging Variables Logging Texts
PA L-ACC AOD Precision Recall F1 BLEU-1 BLEU-4 ROUGE-1 ROUGE-L

LLaMa-2-70b
Base 0.248 0.442 0.682 0.506 0.477 0.490 0.209 0.070 0.218 0.219

SCLogger 0.282 0.486 0.743 0.618 0.467 0.532 0.283 0.177 0.299 0.292
Δ ↑ 13.7% ↑ 10.0% ↑ 8.8% ↑ 22.1% ↓ 2.1% ↑ 8.6% ↑ 35.4% ↑ 152.9% ↑ 37.2% ↑ 33.3%

GPT-3.5
Base 0.395 0.452 0.713 0.618 0.496 0.550 0.164 0.091 0.176 0.174

SCLogger 0.478 0.559 0.766 0.712 0.548 0.619 0.324 0.213 0.330 0.329
Δ ↑ 21.0% ↑ 23.7% ↑ 7.4% ↑ 15.2% ↑ 10.5% ↑ 12.5% ↑ 97.6% ↑ 134.1% ↑ 87.5% ↑ 89.1%

GPT-4
Base 0.518 0.562 0.779 0.634 0.611 0.622 0.285 0.138 0.317 0.321

SCLogger 0.612 0.794 0.914 0.758 0.735 0.746 0.493 0.329 0.517 0.509
Δ ↑ 18.1% ↑ 41.3% ↑ 17.3% ↑ 19.6% ↑ 20.3% ↑ 20.3% ↑ 73.0% ↑ 138.4% ↑ 63.1% ↑ 58.6%

5.4 RQ3: How generalizable is SCLogger for different backbone models?

In this RQ, we evaluate the performance of SCLogger by utilizing various LLMs in conjunction
with our contextualized strategy. We have selected three representative and popular LLMs that
are frequently used in research, specifically GPT-4, GPT-3.5, and Llama-2-70b-chat. It should be
noted that by default, SCLogger employs GPT-4 as the backbone model. Additionally, the size of
the LLMs must be sufficiently large to ensure the capability of both ICL and COT [15, 57].
The experimental results are shown in Table. 4. We observe that our contextualized strategy

can consistently enhance the performance of the utilized base models in terms of all metrics by a
large margin. On average, all models have improved by 17.6% in determining the logging position.
From the perspective of what to log, models have improved their performance in selecting the
logging level, predicting the logging variable, and generating the logging text by an average of
25% (reflected by L-ACC), 13.8% (reflected by F1), and 60.3% (reflected by ROUGE-L) respectively.
Meanwhile, with stronger abilities to understand our designed prompt, larger language models
benefit more from the contextualized strategy associated with SCLogger.

The results not only demonstrate the advantage of SCLogger’s design but also demonstrate the
generalizability for different backbone models of our contextualized strategy. We believe that the
performance of SCLogger can be further improved with the development of code-specific large
language models.

Answer to RQ3. SCLogger demonstrates the ability to consistently improve models’ performance
of logging statement generation, even when utilizing relatively smaller and not code-specific
language models. This demonstrates the generalizability of the proposed contextualized strategy.

5.5 RQ4: What is the impact of different logging examples?

Fig. 8. The selected metrics of SCLogger with different numbers of examples and different sampling methods

In this RQ, we evaluate the effects of the number of logging examples and example sampling
similarity calculation approaches in the prompt design of SCLogger. Following previous works [15,
45, 57], we change the number of examples from one to nine and compare two similarity calculation
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approaches: Unixcoder [57] (searching on the embedded space with Unixcoder [18], a unified
cross-modal pre-trained code large language models) and BM25. Due to the expense and limited
experiment resource, the experiment is conducted using the GPT-3.5 as the backbone model.

As shown in Fig. 8, we observe that the performance of SCLogger is affected by the number of
logging examples, while is less affected by the sampling approaches. The performance drops signif-
icantly when the number of examples is relative small. Moreover, the performance of SCLogger
using both sampling approaches either plateaus or starts to decrease after the example number
is large than five. This proves that dissimilar logging examples and overly long prompts will re-
sult in performance loss, which stays consistent with previous works [15, 45] on ICL with code
tasks. While comparing BM25 to UnixCoder, we observe that BM25-similarity slightly outperforms
UnixCoder in improving the performance of SCLogger. One possible explanation is that BM25,
as a text retrieval algorithm, is more capable in capturing the textual similarity instead of code
semantic similarity between the logging examples and target method, thus providing more relevant
examples with same syntactic structure instead of semantics.

Answer to RQ4. SCLogger achieves the best performance with five examples, which contributes
to maintaining a relatively short prompt length. The performance difference between the two
sampling approaches is not significant, facilitating the use of SCLogger in various situations.

6 DISCUSSION

6.1 Practicality of SCLogger

SCLogger is designed to help developers write logging statements during software development
and maintenance. We discuss the practicality of SCLogger from the following two aspects.
Cost reduction. For large language models, the cost is proportional to the length of the prompt.
To reduce the cost, SCLogger only extracts and isolates the context related to logging to form
the prompt, rather than taking the file-level content as input like existing programming assistants
(i.e., Copilot [16]). Moreover, for the refinement phase, SCLogger only takes type information of
chosen logging variables instead of all available variables, which also help with shorten prompt
length. Our experiments show that in 84.3% of cases, our prompt is shorter than the length of the
current file of the target method, which demonstrates the relative low cost.
IDE integration. SCLogger can be easily integrated into well-established Integrated Development
Environments (IDEs), such as Eclipse[13], for practical applications. In particular, Eclipse JDT[13],
the built-in static analysis tool of Eclipse, has the capability to automate the majority of the static
analysis procedures of SCLogger. Compared with exisiting LLM-based code completion tools,
such as Copilot [16] or Tabnine [53], SCLogger offers more comprehensive static features beyond
method-level to improve the model’s logging performance. Furthermore, experimental results (as
detailed in Sec. 5.4) demonstrate that SCLogger is compatible with a variety of large language
models, thereby continuously benefiting from development of LLMs.

6.2 Threats to Validity

Potential data leakage. A primary concern in this work is the potential data leakage issue arising
from the use of public code. Specifically, there is a possibility that the model has been trained on the
test set, resulting in memorization of the results rather than conducting inference [21, 29, 46, 58].
To address this concern, instead of directly providing the model with the file-level contexts (which
might exist in the training corpus), SCLogger receives a complex prompt composed of code
snippets with logical reasoning relationships. This type of data format is unlikely to have been
encountered by the model during training. Furthermore, our experimental results reveal that the

, Vol. 1, No. 1, Article . Publication date: March 2024.



18 Li et al.

model’s performance in directly generating logging text is significantly below that of practical
use-cases, indicating a minimal probability of direct memorization of the test set.
The selection of models. In this study, we employ three popular instruction-taken and practically
coding-capable LLMs for experimentation, aiming to demonstrate the effectiveness of our proposed
methodology. While a multitude of LLMs exist that could potentially be employed for experi-
mentation, we have discovered that smaller parameter models fail to satisfy our requirements for
understanding such complex prompt. Some models that we have experimented with either lack the
capability to understand instructions or have not yet attained the level of practical application for
instruction-taken coding. In future work, we plan to extend our experimentation to other emerging
models, thereby evaluating the further generalizability of our method.
The selection of language. One potential external concern may be that the datasets primarily rely
on the Java language, which could raise questions about the generalizability of SCLogger to other
programming languages. However, Java is among the most prevalent programming languages for
logging research purposes, in accordance with previous works [34, 37, 40]. The core idea of the
contextualized prompt construction and the process of static analysis can be generalized to other
language with appropriate adaption.

7 RELATEDWORK

In this section, we review the related work on empirical studies of logging practices and approaches
of automatic logging.
7.1 Studies on Logging Practices

In order to enhance the observability and maintainability of systems, logging practices have
been a subject of study [2, 3, 7, 62], which aids developers in adopting more suitable logging
strategies. Fu et al. [14] examined the logging practices in two large-scale online service systems
involving experienced industry developers and provided six key findings about logging code
categories, decision-making factors, and the feasibility of auto-logging. Furthermore, another
industrial study [44] revealed that logging processes are developer-dependent, highlighting the
need for standardizing event logging activities across a company. Researchers have also explored
the evolution of logging statements in open software projects [2, 26, 52]. These studies found
that paraphrasing, inserting, and deleting logging statement operations are widespread during
software development. Zhao et al. [64] investigated the IDs in logging statements and introduced
LTID for automatic ID injection based on a log dependency graph. Ding et al. [10] delved into the
temporal relationships between logging and corresponding source code, leading to the detection of
logging-code temporal inconsistencies through logical and semantic temporal relation rules.

Despite the comprehensive studies of logging practices, offering general and automated strategies
for effective logging remains challenging. The general experience obtained from above studies is
neither automatic nor consistent with the logging style of each project. To bridge the gap, this
work is the first automatic one-stop logging statement generation approach with adapted logging
style, benefiting further research and real-world application.
7.2 Logging Statement Automation

Traditionally, the logging statement automaton can be divided into two steps based on stages [3, 20]:
the selection of logging locations and the generation of logging statements, which we summarize
as where-to-log and what-to-log.

To solve the problem of where to log, researchers have tried many approaches [23, 33, 59, 65, 66]
to find the appropriate logging location in the source code. Prior studies [27, 60] have tackled the log
placement problem within specific code constructs such as catch and if statements. However, such
logging placement can lead to an excess of logging statements, bringing additional system overhead.
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Log20 [65] was proposed to identify an almost optimal placement of logging statements, guided by
information theory and under the constraints of performance overhead. It determines the logging
position by evaluating the effectiveness of each logging statement in distinguishing execution paths.
With the development of machine learning, data-driven approaches [33, 66] have brought about
more possibilities. LogAdvisor [66] will suggest logging positions by learning structural features,
textual features, and syntactic features from systems. By introducing deep learning to learn the
features from source code, Li et al. [33] has elevated performance to a new level.
For what to log, the process of generating logging statements is generally divided into three

subtasks: logging level prediction [28, 34, 37], logging variables selection [6, 38, 62], and logging
text generation [8, 40]. Ordinal-based neural networks [34] and graph neural networks [37] have
been utilized to learn syntactic code features and semantic text features to recommend for logging
level. LogEnhancer [62], from a programming analysis viewpoint, aspires to alleviate the com-
plexity of failure diagnosis by incorporating causally-related variables into a logging statement.
Meanwhile, LoGenText [8] and LoGenText-Plus [9] translates the related source code into short
textual descriptions and then generate the logging text using neural machine translation models.
The most recent approach LANCE [40], provides a one-stop logging statements solution of

deciding logging points and logging statements for method level java code. Nevertheless, owing
to its end-to-end design and limited method-level context, the approach suffers from insufficient
context. As a result, it fails to satisfy the practical needs of real-world development scenarios.
To address this, our approach for context-aware logging statement generation simultaneously
addresses the issues of where-to-log and what-to-log, providing a practical solution for logging
statement automation.

8 CONCLUSION

In this paper, we propose SCLogger, the first contextualized logging statement generation approach
with static contexts. SCLogger incorporates static domain knowledge into language models via a
context-aware prompt structure and further self-refinement. Experimental results show that SCLog-
ger outperforms all baselines and can be generalized various LLMs. We believe that SCLogger
would benefit both developers and researchers in the field of logging statement generation.
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