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Log parsing transforms log messages into structured formats, serving as the prerequisite step for various
log analysis tasks. Although a variety of log parsing approaches have been proposed, their performance on
complicated log data remains compromised due to the use of human-crafted rules or learning-based models
with limited training data. The recent emergence of powerful large language models (LLMs) demonstrates their
vast pre-trained knowledge related to code and logging, making it promising to apply LLMs for log parsing.
However, their lack of specialized log parsing capabilities currently hinders their parsing accuracy. Moreover,
the inherent inconsistent answers, as well as the substantial overhead, prevent the practical adoption of
LLM-based log parsing.

To address these challenges, we propose LILAC, the first practical Log parsIng framework using LLMs
with Adaptive parsing Cache. To facilitate accurate and robust log parsing, LILAC leverages the in-context
learning (ICL) capability of the LLM by performing a hierarchical candidate sampling algorithm and selecting
high-quality demonstrations. Furthermore, LILAC incorporates a novel component, an adaptive parsing cache,
to store and refine the templates generated by the LLM. It helps mitigate LLM’s inefficiency issue by enabling
rapid retrieval of previously processed log templates. In this process, LILAC adaptively updates the templates
within the parsing cache to ensure the consistency of parsed results. The extensive evaluation on public
large-scale datasets shows that LILAC outperforms state-of-the-art methods by 69.5% in terms of the average
F1 score of template accuracy. In addition, LILAC reduces the query times to LLMs by several orders of
magnitude, achieving a comparable efficiency to the fastest baseline.
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1 INTRODUCTION
Log messages are generated by logging statements in the source code to record the system events
and statuses at runtime. Modern software systems produce a large volume of log data [Wang et al.
2022; Yao et al. 2021], facilitating various downstream tasks, such as anomaly detection [Ali et al.
2023; Liu et al. 2023a; Zhang et al. 2022, 2019; Zhao et al. 2021b], failure troubleshooting [Chen
et al. 2021; Xu et al. 2009] and root cause analysis [Amar and Rigby 2019; Notaro et al. 2023;
Wang et al. 2020]. As such, log analysis plays an essential role in the maintenance of software
systems. Log parsing is the first and foremost step in log analysis, which extracts two parts of log
messages: 1) log templates - constant parts that are explicitly written in logging statements; 2) log
parameters - dynamic parts that are changeable in different executions. For example, a logging
statement “logging.info(f"Starting reading data from {file_path}")” can generate a sequence
of log messages with different file_path, such as “Starting reading data from /etc/data/”. In
the above example, the log template is “Starting reading data from <*>”, and the log parameter
indicates the path of data, i.e., “/etc/data/”.
Since the source code is generally inaccessible during system maintenance, a wide range of

techniques (i.e., log parsers) [He et al. 2017; Le and Zhang 2023b; Nagappan and Vouk 2010;
Vaarandi 2003] have been proposed to distinguish the templates and parameters from log messages
automatically. Existing log parsers can be categorized into two groups: syntax-based and semantic-
based. Syntax-based log parsers [Dai et al. 2020; Du and Li 2016; He et al. 2017; Yu et al. 2023b]
utilize specific features or heuristics (e.g., log length, word length and frequency) to extract the
constant parts of log messages as templates. In contrast, semantic-based log parsers [Huo et al.
2023; Le and Zhang 2022; Li et al. 2023b; Liu et al. 2022] employ deep learning models to learn
semantics and system-specific patterns from labeled log data so as to parse new log messages.

Unfortunately, recent benchmark studies [Jiang et al. 2023; Khan et al. 2022; Petrescu et al. 2023]
have revealed that the performance of existing log parsers in practice remains unsatisfactory. On
the one hand, syntax-based log parsers heavily rely on crafted rules, while a significant performance
degradation would happen when the log data deviate from the established rules. On the other hand,
the deep learning models adopted by semantic-based log parsers are trained by limited labeled
log messages. When parsing more complicated log messages that have different features from the
training data, the models may fail to understand semantics and extract templates.

To address these limitations, we propose to leverage the powerful large language models (LLMs)
to achieve effective log parsing. LLMs are trained by vast amounts of text data related to code [Peng
et al. 2023b; Yang et al. 2023] and logging [Li et al. 2023a; Mastropaolo et al. 2022], thus having
the potential to understand log messages comprehensively. For example, when processing a log
message “Process f3e2 write to /etc/smartd.conf failed.”, the LLM can accurately discern
that “f3e2” and “/etc/smartd.conf” are parameters recording the process ID and the file path.
Moreover, this process does not require manually designed rules (e.g., regular expressions and
delimiters), which makes LLMs promising components for log parsing. However, designing a
practical LLM-based log parsing approach still faces the following challenges:

(1) Lack of specialized capability. LLMs are not specialized in log parsing. Although LLMs have
a wealth of general knowledge through pre-training, they are not fine-tuned (e.g., instruction
tuning [Wei et al. 2021] and reinforcement learning with human feedback [MacGlashan et al. 2017])
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for the log parsing task. Hence, the performance of directly querying LLMs to parse log messages
may be compromised [Le and Zhang 2023a; Mudgal and Wouhaybi 2023].
(2) Inconsistent outputs of LLMs. As revealed by recent studies [Du et al. 2023; Mudgal and

Wouhaybi 2023; Mündler et al. 2023; Peng et al. 2023a], LLMs may produce unstable outputs. In
terms of log parsing, LLMs may generate different templates for log messages with the same
template. This inconsistency will lead to a decline in grouping accuracy, a critical factor for certain
downstream tasks, such as log compression [Li et al. 2023c; Rodrigues et al. 2021] and anomaly
detection [Le and Zhang 2022; Zhang et al. 2019].

(3) Huge overhead of employing LLMs. LLMs have billions of weights and require huge computing
resources (e.g., GPUs) for inference. Therefore, compared to traditional parsing tools, the overhead
of querying LLMs (e.g., inference time and network latency) is notably high [Dettmers et al. 2022;
Wang et al. 2023a]. Considering that modern software systems can produce tens of gigabytes of
logs per hour [Li et al. 2023c; Wang et al. 2022; Zhu et al. 2019], directly employing LLMs for log
parsing is impractical.
To tackle the aforementioned challenges, we propose LILAC, a Log parsIng framework using

LLMs with Adaptive parsing Cache. LILAC consists of two main components, the ICL-enhanced
parser and the adaptive parsing cache. The ICL-enhanced parser is designed to accurately parse
queried log messages, while the parsing cache stores and adaptively refines the generated templates
to ensure both efficiency and consistency. In particular, the ICL-enhanced parser leverages the in-
context learning (ICL) capability to adapt LLMs to parse diverse log data. It first obtains high-quality
demonstrations using the proposed effective and efficient candidate sampling and demonstration
selection algorithms, and then utilizes the designed prompt format to guide the LLM to parse log
messages accurately. The design of the parsing cache targets to address the issues of inconsistent
outputs and huge overhead associated with LLMs. By prioritizing the cache matching operation,
LILAC can avoid duplicated queries to LLMs, thereby enhancing the parsing efficiency. Moreover,
the cache updating operation can adaptively refine the potential erroneous templates within the
parsing cache to mitigate the inconsistency of LLMs.
We have conducted a comprehensive evaluation on public large-scale log datasets of Loghub-

2.0 [Jiang et al. 2023] from the LogPAI team [Zhu et al. 2019]. The results show that LILAC achieves
the highest average accuracy on all performance metrics, outperforming state-of-the-art baselines
by 66.8% and 69.5% for the F1 score of grouping and template accuracy, respectively. Furthermore,
LILAC exhibits remarkable robustness across diverse log datasets, consistently maintaining high
performance when integrated with various language models. With regards to efficiency, LILAC
has achieved a speed comparable to the most efficient baseline, Drain [He et al. 2017], significantly
reducing the overhead of querying LLMs.

The main contributions of this work are summarized as follows:
• To the best of our knowledge, we propose the first practical LLM-based log parsing framework
named LILAC. With effective and efficient candidate sampling and demonstration selection
algorithms, LILAC exploits the ICL capability of LLMs, enabling accurate and robust log parsing.

• We introduce an adaptive parsing cache and design cache operations to mitigate the inefficiency
and instability issues associated with the application of LLMs for log parsing.

• We extensively evaluate LILAC on public large-scale datasets. The results show that LILAC
outperforms state-of-the-art methods in terms of accuracy while also achieving high efficiency.

• The source code of LILAC is publicly available at https://github.com/logpai/LILAC to benefit
both practitioners and researchers in the field of log analysis.
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2 BACKGROUND ANDMOTIVATION
2.1 Log Parsing
Log parsing aims to convert semi-structured log messages into structured data, i.e., extracting
both the constant parts (i.e., log templates) and the dynamic parts (i.e., log parameters) from log
messages. A straightforward method involves matching raw log messages with corresponding
logging statements within the source code [Pecchia et al. 2015; Schipper et al. 2019]. However,
this strategy is impractical when the source code is inaccessible, such as commercial software.
Consequently, a variety of data-driven log parsers without requiring access to the source code have
been proposed in the literature [He et al. 2017; Jiang et al. 2008; Yu et al. 2023a]. These log parsers
can be categorized into two groups: syntax-based ones and semantic-based ones.
Unfortunately, recent studies have underscored that existing log parsers struggle when han-

dling diverse log data [Jiang et al. 2023; Khan et al. 2022; Petrescu et al. 2023]. On the one hand,
syntax-based log parsers heavily rely on pre-designed features and rules (e.g., regular expressions),
requiring a substantial amount of domain-specific knowledge. This limitation leads to a compro-
mised performance when processing log data that does not adhere to these established rules. For
instance, Drain [He et al. 2017], a leading syntax-based log parser, employs heuristics based on
the assumption that all log parameters within specific templates possess an identical number of
tokens. This assumption can lead to errors in the parsed templates when the parameter length
exhibits flexibility. On the other hand, semantic-based log parsers typically adopt deep learning
models to utilize the semantics within log messages. Hence, they are inherently limited by the
quantity and quality of labeled data available for model training or tuning. This limitation can lead
to a substantial degradation in their performance when processing complex and large-scale log
data [Jiang et al. 2023; Xu et al. 2023b]. Additionally, the log messages generated in production
systems are continually evolving, resulting in ever-changing characteristics of log data [Wang
et al. 2022; Xu et al. 2023b]. This evolution may render training-based or tuning-based methods
non-adaptive to the changes in log data, subsequently leading to unsatisfying practical performance.

2.2 Large Language Models
Large Language Models (LLMs) have demonstrated remarkable performance in the field of natural
language processing. These models generally adopt the Transformer [Vaswani et al. 2017] architec-
ture and are trained on extensive corpora using self-supervised objectives. LLMs are characterized
by their large sizes, e.g., the standard GPT-3 model [Brown et al. 2020] has 175 billion parameters.
Recently, many studies (e.g., SPINE [Wang et al. 2022] and Hue [Xu et al. 2023a]) have introduced
the “human-in-the-loop” concept, indicating the need for external knowledge for effective log
analysis. Given that LLMs already possess a substantial amount of pre-trained knowledge, it is
promising to utilize LLMs for log parsing.

However, how to effectively apply LLMs to downstream tasks has emerged as a vital research topic.
A common approach involves fine-tuning the model and updating the parameters using specific
downstream datasets. Nonetheless, this method demands considerable computational resources and
high-quality data, making it less feasible in specific scenarios. In contrast, in-context learning (ICL)
presents an innovative alternative to utilize LLMs to perform downstream tasks [Dong et al. 2022;
Liu et al. 2023c]. Specifically, in the ICL paradigm, the prompt to query LLMs typically comprises
three parts: (1) Instruction: description of the specific task; (2) Demonstrations: several examples,
i.e., pairs of queries and corresponding ground-truth answers; (3) Query: the query that requires
an answer from LLMs. Such a prompt can let LLMs gain task-specific knowledge by learning the
input-output relationship of the task. Recent studies have demonstrated that ICL can aid LLMs in
achieving remarkable performance in a variety of tasks such as logic reasoning [Wei et al. 2022]
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and fact retrieval [He et al. 2022]. Therefore, in this paper, we intend to adopt LLMs with the ICL
paradigm to achieve effective log parsing.

2.3 Challenges of Log Parsing with LLMs
Although utilizing LLMs for log parsing presents significant potential and some recent work [Le
and Zhang 2023a; Liu et al. 2023b; Xu et al. 2023b] has investigated the LLM-based log parsing,
these studies fall short in addressing the following three critical challenges, which prevent their
practical adoption.

• Specialization. Although LLMs are imbued with a large volume of pre-trained knowledge, they
are not specialized in the log parsing task. As a result, directly querying LLMs to perform log
parsing could potentially result in a compromised performance. The ICL paradigm can facilitate
the adoption of LLMs to log parsing without tuning. Specifically, the demonstrations within the
prompt can impart task-specific knowledge to LLMs by the correlation between input and output.
In practice, the initial phase of ICL involves sampling a small set of candidate log messages,
from which the demonstrations for each query will be selected. Given the huge volumes and
imbalanced frequencies [Jiang et al. 2023; Khan et al. 2022; Wang et al. 2022] of logs in real-world
systems, it is quite challenging to select diverse candidate log messages for effective ICL. Though
some sampling algorithms exist for few-shot log parsing [Le and Zhang 2023b; Xu et al. 2023b],
all of them require pairwise computation between log messages or adopt random sampling,
which can hardly choose diverse candidates efficiently. Hence, the efficient sampling of a set of
diverse candidate log messages to enable effective ICL still presents a challenge.

• Consistency. Despite the strong capabilities of understanding and generating texts, LLMs may
produce unstable answers, which has been identified and discussed in recent studies [Mündler
et al. 2023; Peng et al. 2023a; Zheng et al. 2023]. Furthermore, due to the limitation of LLMs in
parsing based solely on the semantics within a single query, they may exhibit inconsistency
in determining whether a particular token is a parameter. These may lead LLMs to produce
templates that are either more broad or more specific when parsing two log messages that share
the same template but have distinct parameter values. For example, when parsing two distinct
log messages, “User root failed to kill the process 0xF28A” and “User user1 failed to

kill the process 0x6C37” individually, inconsistency may arise in the answers of the LLM.
Specifically, the LLM may identify “root” in the first log message as a constant token while
identifying “user1” in the second log message as a parameter. These inconsistent templates can
precipitate a decrease in grouping accuracy, which would impact downstream tasks such as log
compression and anomaly detection. Therefore, mitigating the inconsistency of LLMs to generate
consistent log templates is yet to be resolved.

• Efficiency. Given that real-world systems generate substantial volumes of log data, e.g., tens of
gigabytes per hour [Jiang et al. 2023; Wang et al. 2022; Zhu et al. 2019], log parsers should process
high volumes of data efficiently, e.g., millions of log messages per minute. Therefore, efficiency
is a critical aspect of practical log parsers. Since LLMs have billions of weights and require
extensive resources (e.g., high-performance GPUs) for inference, they are typically deployed on
high-performance servers and provide query interfaces. Compared to traditional local-deployed
parsing tools, utilizing LLMs inevitably introduces considerable overhead, including inference
time and network latency [Dettmers et al. 2022; Wang et al. 2023a]. Existing work [Le and Zhang
2022, 2023a; Xu et al. 2023b] employs LLMs or other language models to process each log message
individually, which is hard to meet the practical efficiency demands [Jiang et al. 2023; Mudgal
and Wouhaybi 2023]. Consequently, how to achieve efficient LLM-based log parsing remains a
challenge to be addressed.
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Prompt format

Answer

Log data

Adaptive
Parsing cache ICL-enhanced parser

Cache matching
Failed: LLM querying

Cache updating

Relevant templates 

Fig. 1. The overall workflow of LILAC.

3 METHOD
3.1 Overview
In this section, we introduce LILAC, a log parsing framework using LLMs with adaptive parsing
cache. LILAC consists of two components: the ICL-enhanced parser and the adaptive parsing cache.
To specialize the LLM in log parsing and adapt it to various log data, the ICL-enhanced parser
utilizes the ICL paradigm. Specifically, an efficient candidate sampling algorithm is performed to
choose a candidate set of diverse log messages, from which effective demonstrations can be selected
for the LLM. To address the inefficiency associated with the utilization of LLMs, LILAC introduces
a novel component, the parsing cache, to store the parsed templates. Such a design is motivated
by the following observation: The number of log templates is several orders of magnitude smaller
than the number of log messages in real-world systems [Jiang et al. 2023; Liu et al. 2019; Wang
et al. 2022]. For instance, the datasets in Loghub-2.0 [Jiang et al. 2023] contain over 50 million
log messages, yet the total number of log templates is fewer than 3,500. Hence, through caching
and matching the parsed log templates, LILAC can avoid duplicate LLM queries and significantly
improve the parsing efficiency. Moreover, to ensure the consistency of the parsed results, LILAC
adaptively refines the stored log templates within parsing cache based on the newly generated
templates from the ICL-enhanced parser.
Fig. 1 overviews the workflow of LILAC. For each log message to parse, LILAC first performs

the cache matching operation to check whether its corresponding template is already stored in
the parsing cache. If so, LILAC directly used the matched template as the parsed result of this
log message, thereby preventing duplicate queries of the LLM. Otherwise, the cache matching
operation will retrieve several relevant templates from the parsing cache, which exhibit a high
degree of correlation with the input log message. Since these relevant templates may be erroneous
templates caused by mistakes of the LLM, LILAC will record them for the subsequent adaptive
updating. Then, the ICL-enhanced parser selects high-quality demonstrations from the sampled
candidate set to form the designed prompt. This prompt is then used to query the LLM to extract the
template for this log. Based on both the generated template and its relevant templates, in the cache
updating operation, LILAC will adaptively determine whether to insert the generated template as
a new template to the parsing cache, or to refine an existing relevant template to achieve more
precise and consistent parsed results.

3.2 ICL-enhanced parser
Fig. 2 presents the overall design of the ICL-enhanced parser adopted by LILAC. It employs the
ICL paradigm to adapt the LLM to log parsing task without resource-intensive model tuning.
Furthermore, it leverages system-specific features within demonstrations to facilitate more accurate
log parsing. In particular, we propose an effective and efficient candidate sampling algorithm,
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along with a demonstration selection algorithm, to obtain high-quality examples for effective ICL.
Specifically, LILAC first performs the hierarchical candidate sampling algorithm to sample a small
set of diverse and representative candidate log messages. During the online parsing, for each
queried log, LILAC utilizes the KNN-based demonstration selection algorithm to choose similar
demonstration examples. These demonstrations are integrated into the prompt following the
designed format. Lastly, the ICL-enhanced parser inputs the prompt to the LLM and obtains the
generated templates.

Historical
log

data

Hierarchical
clustering

Demonstration
examples

Hierarchical quota 
distribution

Candidate set

Instruction

Here are some examples:
Log message: ’{log message}’
Log template: ‘{log template}’

…
Please parse the following log 
message:
Log message: ‘{queried log 
message}’

Prompt format

LLMs…

(2) Special 
formats

Clustering 
rules

(1) Frequent
tokens

Candidate sampling

Query

Demonstration selection

Generated 
templates

Answer

Log query

Fig. 2. The workflow of ICL-enhanced parser.

3.2.1 Candidate Sampling. A typical application of the ICL paradigm involves initially sampling a
small set of candidate log messages from produced log data in the system. It is crucial to ensure
that the candidate set is diverse to mitigate the potential risk of inductive bias [Le and Zhang 2023b;
Xu et al. 2023b], since disproportionate demonstrations could cause the LLM to overfit to a specific
example. Furthermore, these candidates ought to be representative, i.e., they should be capable of
representing more log messages within the log data to provide the LLM with more system-specific
characteristics. In real-world applications, this sampling procedure can initially be performed on
the historical log data and be executed periodically to maintain a dynamic candidate set, thereby
facilitating adaptation to the continuous evolution of log data. Therefore, the efficiency of this
sampling process is essential.
In the ICL-enhanced parser, we propose a hierarchical sampling algorithm to extract a small,

diverse, and representative set of log messages from substantial log data, as illustrated in the left
part of Fig. 2. This algorithm consists of two phases, hierarchical clustering and hierarchical quota
distribution. It first groups the entire log data into hierarchical clusters based on the characteristics
of log messages. Each cluster encompasses log messages with highly similar features, whereas
log messages within different clusters exhibit divergent characteristics. Then, a hierarchical quota
distribution approach is performed to select candidates from different clusters while assigning
distinct priorities to each cluster based on its number of log messages.
Hierarchical clustering. Inspired by previous research [Jiang et al. 2023; Liu et al. 2019; Nagappan
and Vouk 2010], we first utilize the top-K frequent tokens to group log messages. The intuition is
that log messages that share the same frequent tokens are more likely to have the same templates.
Specifically, we first tokenize each log message and then calculate all token frequencies. During
the above process, stop words in the Scipy library [sci 2023] are excluded to eliminate irrelevant
tokens. For each log message, tokens with top-K frequencies are selected, which form the basis for
their categorization into different coarse-grained clusters. In other words, all log messages within
the same coarse-grained clusters share the same top-K frequent tokens.

However, solely utilizing frequent tokens is insufficient to differentiate log messages with varying
characteristics, i.e., log messages that share the same top-K frequent tokens may correspond to
different log templates. Thus, we leverage the special characters (i.e., characters that are not
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alphabets, numerals, or white space) to reflect the features of log messages, defining the set of
special characters in a log message as its special format. Log messages originating from the same
template typically share an identical special format. This is because the special characters in the
constant parts (i.e., the template) of a log message are invariably identical, and those in the dynamic
parts (i.e., the parameter) are generally congruent. For instance, the special format of “Received
block: blk_358 of size 6710 from /127.0.0.1” is {‘:’,‘_’,‘.’,‘/’}. For other log messages that
share the same template, such as “Received block: blk_729 of size 8199 from /127.0.0.2”, they
would have an identical special format. Therefore, we use the special formats of log messages to
perform fine-grained clustering. In detail, log messages in each coarse-grained cluster are further
divided according to their special formats and constitute fine-grained clusters, wherein all log
messages not only have identical top-K frequent tokens but also share the same log format.
Hierarchical quota distribution. In this phase, we aim to choose diverse and representative log
messages as candidates from the fine-grained clusters. The core idea is to hierarchically distribute
the quota of 𝐾𝑠 candidates across all fine-grained clusters as evenly as possible to enhance diversity.
Moreover, we assume that clusters with a larger number of log messages are more representative.
Hence, in situations where achieving an equitable distribution is unattainable, priority is given to
fine-grained clusters with more log messages.
Initially, we distribute the quota of 𝐾𝑠 candidates uniformly across all coarse-grained clusters.

Subsequently, within each coarse-grained cluster, we arrange all fine-grained clusters in descending
order based on their priorities determined by the number of log messages they contain. Given a
coarse-grained cluster that has been allocated 𝐾𝑐 quotas and contains 𝑛 sorted fine-grained clusters,
denoted as {𝑓1, 𝑓2, · · · , 𝑓𝑛}, the quota assigned to cluster 𝑓𝑖 is as follows:

𝑆 (𝑓𝑖 ) =
{
⌊𝐾𝑐

𝑛
⌋ + 1 if 𝑖 ≤ (𝐾𝑐 mod 𝑛)

⌊𝐾𝑐

𝑛
⌋ otherwise

Recall that the design of the ICL-enhanced parser in LILAC is intended to leverage the ICL
paradigm in few-shot scenarios, which suggests that the number of sampled candidates, 𝐾𝑠 , is
typically small. This means, in most cases, the number of fine-grained clusters surpasses the number
of sampled candidates, i.e., 𝑁𝑓 > 𝐾𝑠 . Hence, the quota allocation for each fine-grained cluster is
also typically small (e.g., 0 to 2). Lastly, we randomly select the assigned number of candidate log
messages within each fine-grained cluster to ensure high efficiency.

3.2.2 Demonstration Selection. During the parsing process, to mitigate the interference of irrelevant
information and enhance log parsing accuracy, we need to further select 𝑘 demonstration examples
from the 𝐾𝑠 candidates to construct the prompt for ICL. These demonstration examples should
exhibit similarity to the queried log message, providing the LLM similar patterns and semantics
within the examples to parse this log message accurately [Gao et al. 2023; Xu et al. 2023b].

LILAC adopts k-Nearest Neighbors (kNN), a simple yet effective algorithm to select demonstration
examples. For each queried log message 𝑙 , we compute the similarities between it and all candidate
log messages, i.e., 𝑠𝑖𝑚(𝑙, 𝑠𝑖 ), 𝑖 ∈ [1, 𝐾𝑠 ]. We propose to measure the similarity between two log
messages based on both tokens and special formats. In specific, given a log message 𝑙 , we extract
the characters of the tokens that are derived from 𝑙 and the special characters within 𝑙 , to form the
feature set of 𝑙 , i.e., 𝐹 (𝑙). Based on this, we can calculate the value of 𝑠𝑖𝑚(·) of two log messages
by using the Jaccard similarity [jac 2023] of their feature sets, i.e., 𝑠𝑖𝑚(𝑙1, 𝑙2) = |𝐹 (𝑙1 ) ∩ 𝐹 (𝑙2 ) |

|𝐹 (𝑙1 ) ∪ 𝐹 (𝑙2 ) | . After
computing all similarities, we select log messages from the candidate sets that exhibit the top-𝑘
highest similarities. These log messages, characterized by similar tokens and special characters
to the queried log, are instrumental in aiding the LLM to comprehend the semantics and formats
embedded within them.
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3.2.3 Query Design. Following previous work [Le and Zhang 2023a; Xu et al. 2023b], we design
and use the prompt format, as depicted in Fig. 3, to query the LLM to generate the log template for
an individual log message. Specifically, the prompt encompasses the following three parts.
(1) Instruction. To provide the LLM with more task-specific information, we employ an instruction

that briefly introduces the task, the concept of log parsing, and the formats of input and output.
(2) Demonstration Examples. Subsequently, we integrate several demonstrations, chosen by the

demonstration selection algorithm, into the prompt. Each demonstration includes a pair of
one log message and its log template. Since recent work [Gao et al. 2023; Zhao et al. 2021a]
has pinpointed that LLMs with ICL are more prone to be influenced by the examples that are
closer to the query, we arrange the demonstration examples in ascending order of similarity to
the queried log, i.e., those of higher similarities closer to the queried log. This is based on the
intuition that examples with higher similarity may encompass more information pertinent to
parsing the queried log.

(3) Queried Log. Last, we present the content of the log message to query the LLM.
Guided by the instruction and demonstration examples, the LLM could more precisely answer

the log template of the queried log in the prompt, adhering to the correct format.

I want you to act like an expert in log parsing. I will give you a log message wrapped by backticks. Your task is
to identify all the dynamic variables in logs, replace them with {variables}, and output a static log template.
Please print the input log's template wrapped by backticks. Log template: `Progress of TaskAttempt {variables} 

is : {variables} done`

Here are some examples:
Log message: `Finished spill process 7`
Log template: `Finished spill process {variables}`
Log message: `Task cleanup failed for 3 attempt`
Log template: `Task cleanup failed for {variables} attempt`
Log message: `MapCompletionEvents request from attempt_1895628352891_0043_r_001. startIndex 9 
maxEvents 10000`
Log template: `MapCompletionEvents request from {variables}. startIndex {variables} maxEvents {variables}`

Please parse the following log message:
Log message: `Progress of TaskAttempt attempt_1445062781478_0018_m_007 is : 0.3811716 done`

Prompt format

Progress of TaskAttempt <*> is : <*> done

Query LLM

Postprocess

Generated template

LLM’s output

Fig. 3. The demonstration of our prompt design.

3.3 Adaptive Parsing Cache
The adaptive parsing cache is designed to guarantee the efficiency and consistency of LILAC.
Specifically, LILAC adopts a tree structure to store the generated templates of the LLM, serving
as the parsing cache. The left part of Fig. 4 demonstrates an example of parsing cache, which
stores three log templates. In the parsing cache, all generated log templates are tokenized into
a list of tokens, which are stored in the tree from top to bottom. Each intermediate node in the
tree represents a token, with the “<*>” denoting the wildcard token that can match any length of
tokens. Each leaf node of the tree represents a unique log template, which corresponds to the string
obtained by concatenating all tokens contained in all intermediate nodes on the unique path from
the root node to the leaf node. This tree structure allows for efficient storage and parallel retrieval
of log templates. To retrieve a specific template, only one single traversal from the root to the leaf
node is required, without the necessity to check each template sequentially (Sec. 3.3.1). Moreover,
the tree structure can directly reflect the similarity among log templates, i.e., templates within the
same subtree share a common prefix. This can aid in filtering relevant templates of specific log
messages, which will be further used for cache updating operation (Sec. 3.3.2).

Based on the tree structure of parsing cache, we further design two cache operations, i.e., cache
matching and cache updating. The cache matching operation is used to determine whether the
template of the input log message has already been stored in parsing cache. The cache updating
operation is designed to adaptively update templates stored in the parsing cache when the cache
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matching fails and a new template is generated by the ICL-enhanced parser. Next, we illustrate the
design details of these cache operations.

Case1: Cache matching 𝐿!	: Started process 1616 listening 127.0.0.1

𝐿":	Started reading broadcast variable 1

root Started process 		𝑇!

1. Successful match with T1 2. Finished

Case2: Cache updating (insert)

3. Compare 
similarity

5. Finished

𝐿#:	User user1 successfully login in

root User

1. Failed match
(stop at User) 4. Refine template 𝑇#: 𝑇$ -> 𝑇# 

Case3: Cache updating (refine)

5. Finished

2. Generated
template 𝑇$

𝐿": 𝑇"

2. Generated
template 𝑇$

3. Compare 
similarity

𝑇#:	Started reading 
broadcast variable  <*>

Sim (𝑇$, 𝑇%) < 𝜃

1. Failed match
(Stop at reading) 4. Insert new template: 𝑇$ -> 𝑇%

𝑇#: User <*> successfully 
log in

Sim (𝑇#, 𝑇&) > 𝜃 𝐿#: 𝑇&

𝐿!: 𝑇!

root

Started User

process admin

<*>

listening

<*>

reading

<*>

files

successfully

login

in

		𝑇!

		𝑇%

		𝑇&

Parsing cache

<*> listening <*>

root Started reading

T4broadcast variable <*>

...

Fig. 4. The demonstration cases of cache matching and updating operations for the parsing cache.

3.3.1 Cache Matching. Given a new log message, LILAC first checks whether the corresponding
template has been stored in the parsing cache through the cache matching operation, which can
reduce duplicate queries to LLM and improve parsing efficiency. To match the input log message
with the parsing cache, we first split the log content into a series of tokens by delimiters. Then, these
tokens are read sequentially from the first to the last, with each being compared to intermediate
nodes within the tree structure of parsing cache. Specifically, for the initial token, a search is
conducted to verify its presence in the second layer of the tree since the first layer is the empty
root node. If a match is found for the first token, the process continues with the second token
and the children of the matched node. This procedure persists until all tokens have been read or
until no further tokens can be matched. It is worth noting that the wildcard token “<*>” represents
parameters of variable length, thus it can match more than one token. Consistent with existing
work [Liu et al. 2019], we employ recursive processing to match the wildcard. Furthermore, to
prevent overly broad matching, a limit is also imposed on the maximum number of tokens that a
single “<*>” can match.
After the matching process, reaching a leaf node indicates an exact match of the template

represented by the leaf node and the input log message, i.e., the template of this log is stored in the
parsing cache. Hence, there is no necessity to query the ICL-enhanced parser again, and the id of
the leaf node is recorded as the template id of this log message. As shown in Case1 of Fig. 4, when
the log message 𝐿1 successfully matches the template𝑇1 stored in the parsing cache, LILAC directly
marks 𝑇1 as the parsed template of 𝐿1. In some special cases, multiple matched templates may be
returned. Consistent with previous research [He et al. 2017; Jiang et al. 2023], the template with the
longest constant parts is selected, as it can match more non “<*>” characters, thereby indicating a
higher likelihood of it being the template for this log message.

If no leaf node is reached after the recursive matching process, it will terminate at one or more
internal nodes, referred to as stop nodes. In such cases, all templates within the subtrees of stop
nodes form a list of relevant templates, denoted as [𝑇1,𝑇2, · · · ,𝑇𝑛]. For example, in Case2 of Fig. 4,
the cache matching process stops at the “reading” node, so the only template𝑇2 within the subtree
is the relevant template. These relevant templates share a portion of prefixes identical to the current
log message without an exact match. The failed matching may be caused by: (1) It is the first parsed
log message of its respective template. (2) The LLM produces erroneous templates for previous
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log messages with the same template. To discriminate the above two circumstances, the cache
matching operation will return relevant templates for subsequent cache updating operation.

3.3.2 Cache Updating. When the cache matching of a specific log message fails, LILAC will query
the ICL-enhanced parser to generate the template 𝑇𝑎 . Although the LLM can correctly parse most
log messages with the assistance of ICL, its unstable outputs and singular focus on the semantics of
a single query may lead to the creation of erroneous and inconsistent templates. For example, when
individually parsing two log messages, “User admin successfully login in” and “User user1

successfully login in”, the LLM may erroneously interpret “admin” as a constant part, while
considering “user1” as a parameter. However, when combining these two log messages for analysis,
we can ascertain that both “admin” and “user1” are dynamic parameters, indicating the username.

To address this limitation and ensure the consistency of generated templates, we will compare
the generated template with the relevant templates during the cache updating operation. If the
newly generated template exhibits high similarity with an existing relevant template, these two
log templates may be derived from the same ground-truth template. We then leverage the new
template to refine the relevant template within the parsing cache. Otherwise, we will insert it as a
new template into the parsing cache. In detail, after getting the newly generated log template 𝑇𝑎
from the ICL-enhanced parser, we first discern whether 𝑇𝑎 could potentially belong to the same
ground-truth template as any relevant template in the parsing cache. We calculate the similarities
between 𝑇𝑎 and all relevant templates {𝑇1,𝑇2, · · · ,𝑇𝑛} returned by the cache matching operation.
Given two templates 𝑇1 and 𝑇2, we split them into a list of tokens, denoted as 𝐿1 and 𝐿2. Then,
the similarity between 𝑇1 and 𝑇2 is defined as: 𝑆𝑖𝑚(𝑇1,𝑇2) = 2×𝑙𝑒𝑛 (𝐿𝐶𝑆 (𝐿1,𝐿2 ) )

𝑙𝑒𝑛 (𝐿1 )+𝑙𝑒𝑛 (𝐿2 ) , where the 𝐿𝐶𝑆 is the
longest common subsequence of two templates. We choose 𝑇𝑏 from all relevant templates, which
exhibits the highest similarity with 𝑇𝑎 . (1) If the similarity is smaller than the pre-defined threshold
(e.g., 0.8 in our implementation), it implies that the new template 𝑇𝑎 exhibits a low correlation with
these relevant templates. As a result, LILAC directly insert 𝑇𝑎 into the parsing cache. For example,
in Case2 of Fig. 4, the similarity between 𝑇𝑎 and 𝑇2 is small, so 𝑇𝑎 is inserted into the parsing cache
as a new template. (2) If 𝑆𝑖𝑚(𝑇𝑎,𝑇𝑏) exceeds the threshold, it indicates that 𝑇𝑎 and 𝑇𝑏 are highly
similar and likely belong to the same ground-truth template. Such inconsistent templates may be
caused by mistakes of LLMs. Therefore, we refine 𝑇𝑏 by merging 𝑇𝑎 to ensure the consistency. This
is achieved by modifying the path of 𝑇𝑏 within the tree of parsing cache, wherein the differing
tokens are replaced with the “<*>”. An example is shown in Case3 of Fig. 4, the similarity between
𝑇𝑎 and𝑇3 is high, so we refine the “admin” node to “<*>”. This creates a new refined template “User
<*> successfully log in”. In this manner, LILAC can adaptively update the parsing cache, utilizing
both the answers of the LLM and historical templates within parsing cache, thus enhancing the
accuracy of the parsed templates. Moreover, as the log templates within the parsing cache are
considerably fewer than the log messages, and the cache matching operation selectively filters
relevant templates, the overhead associated with cache updating is typically minimal.

4 EXPERIMENTAL SETUP
4.1 ResearchQuestions
We evaluate LILAC on public large-scale log datasets by answering the following research questions:
• RQ1: How effective is LILAC in parsing log messages?
• RQ2: How does each design contribute to LILAC?
• RQ3: How capable is LILAC integrated with different LLMs?
• RQ4: How efficient is LILAC in processing large-scale log data?
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4.2 Datasets and baselines
Our experiments are conducted using Loghub-2.0 [He et al. 2020; Jiang et al. 2023], a collection of
large-scale datasets for log parsing from LogPAI [Zhu et al. 2019]. Loghub-2.0 contains ground-truth
templates of 14 log datasets in Loghub [He et al. 2020] from a wide range of systems, including
distributed systems, operating systems, and server-side applications. On average, each dataset in
Loghub-2.0 contains 3.6 million log messages, all labeled with ground-truth log templates. Besides,
the total number of log templates is about 3,500.
In accordance with recent benchmark studies [Jiang et al. 2023; Khan et al. 2022], we select

four open-source and state-of-the-art log parsers for comparison with our method. The first two,
AEL [Jiang et al. 2008] and Drain [He et al. 2017], are chosen due to their superior performance
among all syntax-based log parsers. We also choose two latest semantic-based log parsers, Uni-
Parser [Liu et al. 2022] and LogPPT [Le and Zhang 2023b], considering the highest parsing accuracy
they have achieved [Jiang et al. 2023]. To ensure a fair comparison, we use the implementations of
all baselines from their replication repositories, choosing the default settings or hyper-parameters.

4.3 Metrics
Following recent studies [Jiang et al. 2023; Khan et al. 2022; Liu et al. 2022], we used the following
four metrics in our experiments:
• Grouping Accuracy (GA): GA is computed as the ratio of correctly grouped log messages to the
total count of log messages. A log message is considered to be correctly grouped if and only if its
template aligns with the same set of log messages as that of the ground truth.

• F1 score of Grouping Accuracy (FGA): FGA is a template-level metric that focuses on the ratio
of correctly grouped templates. Specifically, let 𝑁𝑔 be the actual correct number of templates in
the ground truth, and 𝑁𝑝 be the number of templates that are generated by a log parser. If 𝑁𝑐 is
the number of templates that are correctly parsed by the log parser, then we can compute the
Precision of Grouping Accuracy (PGA) as 𝑁𝑐

𝑁𝑝
and the Recall of Grouping Accuracy (RGA) as 𝑁𝑐

𝑁𝑔
.

The FGA is equal to their harmonic mean, i.e., 2×𝐺𝑃𝐴×𝑅𝐺𝐴
𝑃𝐺𝐴+𝑅𝐺𝐴 .

• Parsing Accuracy (PA): PA evaluates the capacity to extract the templates accurately, which is
essential to downstream tasks such as anomaly detection [Liu et al. 2022]. PA is defined as the
proportion of correctly parsed log messages to the total number of log messages. A log message is
regarded to be correctly parsed if, and only if, all tokens of templates and variables are accurately
identified.

• F1 score of Template Accuracy (FTA): Similar to FGA, FTA is a template-level metric that is
calculated based on the proportion of correctly identified templates. It is computed as the harmonic
mean of Precision and Recall of Template Accuracy. Differently, a template is regarded as correctly
identified if and only if log messages of the parsed template share the same ground-truth template
and all tokens of the template are the same as those of the ground-truth template.

4.4 Implementation and Environment
We conduct our experiments on an Ubuntu 20.04.5 LTS server with 256GB RAM and an NVIDIA
GeForce GTX3090 since UniParser and LogPPT require GPU resources to perform log parsing. The
default LLM in LILAC is set to ChatGPT (gpt-3.5-turbo-0613), primarily due to its popularity in
recent research [Le and Zhang 2023a; Li et al. 2023a; Peng et al. 2023b; Xu et al. 2023b]. We call
ChatGPT through the official API provided by OpenAI [ope 2023] and set its temperature to 0
so that ChatGPT would generate the same output for the same query to ensure reproducibility.
Moreover, we also employ different LLMs to explore the generalizability of LILAC. To simulate the
practical usage of LILAC, we use the sampling algorithm to select candidates from the first 20% of
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the log messages in each dataset, and the default number of candidate samples and demonstration
examples are set to 32 and 3, respectively. We also evaluate the performance of LILAC with different
numbers of sampled candidates and demonstration examples.

We have implemented LILAC in Python and integrated it into previous benchmarks [Jiang et al.
2023; Khan et al. 2022; Zhu et al. 2019] so that we can fairly compare LILAC and all baselines in
the same framework. For all experiments that exhibit randomness, we repeat them five times and
report the median results following previous work [Jiang et al. 2023; Khan et al. 2022; Xu et al.
2023b] to avoid potential random bias.

5 EVALUATION RESULTS
5.1 RQ1: How effective is LILAC in parsing log messages?

Table 1. Accuracy comparison between baselines and LILAC on public datasets (%)

AEL Drain UniParser LogPPT LILAC
GA FGA PA FTA GA FGA PA FTA GA FGA PA FTA GA FGA PA FTA GA FGA PA FTA

Hadoop 82.3 11.7 53.5 5.8 92.1 78.5 54.1 38.4 69.1 62.8 88.9 47.6 48.3 52.6 66.6 43.4 87.2 96.2 83.2 77.9
HDFS 99.9 76.4 62.1 56.2 99.9 93.5 62.1 60.9 100 96.8 94.8 58.1 72.1 39.1 94.3 31.2 100 96.8 99.9 94.6

OpenStack 74.3 68.2 2.9 16.5 75.2 0.7 2.9 0.2 100 96.9 51.6 28.9 53.4 87.4 40.6 73.8 100 100 100 97.9
Spark — — — — 88.8 86.1 39.4 41.2 85.4 2.0 79.5 1.2 47.6 37.4 95.2 29.9 100 90.1 97.3 75.9

Zookeeper 99.6 78.8 84.2 46.5 99.4 90.4 84.3 61.4 98.8 66.1 98.8 51.0 96.7 91.8 84.5 80.9 100 96.7 68.7 86.8
BGL 91.5 58.7 40.6 16.5 91.9 62.4 40.7 19.3 91.8 62.4 94.9 21.9 24.5 25.3 93.8 26.1 89.4 85.9 95.8 74.6
HPC 74.8 20.1 74.1 13.6 79.3 30.9 72.1 15.2 77.7 66.0 94.1 35.1 78.2 78.0 99.7 76.8 86.9 90.7 70.5 80.0

Thunderbird 78.6 11.6 16.3 3.5 83.1 23.7 21.6 7.1 57.9 68.2 65.4 29.0 56.4 21.6 40.1 11.7 80.6 79.3 55.9 57.2
Linux 91.6 80.6 8.2 21.7 68.6 77.8 11.1 25.9 28.5 45.1 16.4 23.2 20.5 71.2 16.8 42.8 97.1 93.1 76.5 74.0
Mac 79.7 79.3 24.5 20.5 76.1 22.9 35.7 6.9 73.7 69.9 68.8 28.3 54.4 49.3 39.0 27.4 87.6 82.5 63.8 55.3

Apache 100 100 72.7 51.7 100 100 72.7 51.7 94.8 68.7 94.2 26.9 78.6 60.5 94.8 36.8 100 100 99.6 86.2
OpenSSH 70.5 68.9 36.4 33.3 70.7 87.2 58.6 48.7 27.5 0.9 28.9 0.5 27.7 8.1 65.4 10.5 69.0 83.8 94.1 86.5
HealthApp 72.5 0.8 31.1 0.3 86.2 1.0 31.2 0.4 46.1 74.5 81.7 46.2 99.8 94.7 99.7 82.2 100 98.1 72.9 87.3
Proxifier 97.4 66.7 67.7 41.7 69.2 20.6 68.8 17.6 50.9 28.6 63.4 45.7 98.9 87.0 100 95.7 100 100 100 100
Average 85.6 55.5 44.2 25.2 84.3 55.4 46.8 28.2 71.6 57.8 73.0 31.7 61.2 57.4 73.6 47.8 92.7 92.4 84.2 81.0

In this RQ, we conduct a comprehensive evaluation of the accuracy and robustness of LILAC in
comparison to other state-of-the-art baselines on public datasets.

5.1.1 Accuracy. The accuracy is the most critical factor in the effectiveness of log parsers. We
employ the default settings of all methods (e.g., 32 sampled candidates for both LogPPT and LILAC)
and apply them to all log datasets. The four selected metrics are shown in Table. 1, and the best
results for each metric on each dataset are marked in bold font. The metrics for AEL on Spark are
denoted as “–” since it cannot complete the parsing process of the Spark dataset within a reasonable
time (i.e., 12 hours), following previous works [Jiang et al. 2023; Khan et al. 2022].

According to the evaluation results, it is clear that LILAC outperforms all baselines on all average
metrics. In specific, in terms of group-related metrics (i.e., GA and FGA), LILAC achieves average
scores of 92.7% and 92.4% on GA and FGA, outperforming Drain by 10.0% and 66.8%. However, the
best baseline, Drain, achieves a GA of 84.3% but only an FGA of 55.4%. This is due to the imbalanced
frequencies of templates in log datasets, and these log parsers may generate a large number of
redundant and erroneous log templates, thereby leading to a markedly low PTA, which subsequently
results in a low FTA. These redundant and erroneous templates can also seriously affect downstream
tasks. Although the inherent instability of generative models causes the grouping-related metrics
of UniParser and LogPPT to be inferior to other syntax-based log parsers, the designs of the parsing
cache within LILAC are able to mitigate this issue, achieving superior grouping metrics.

When considering the metrics related to parsing ability (i.e., PA and FTA), LogPPT has achieved
the highest PA of 73.6% and FTA of 47.8% among all baselines. However, without the tuning process,
LILAC has achieved superior parsing metrics, with a PA of 84.2% and an FTA of 81.0%, which
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outperforms LogPPT by 14.4% and 69.5%, respectively. For the most stringent and comprehensive
metric, the FTA, LILAC surpasses all baselines across all datasets. Given the strict definitions of
correctly parsed and correctly identified, achieving such high metrics signifies that LILAC indeed
possesses a strong capacity to distinguish between log templates and parameters.

5.1.2 Robustness. The robustness of log parsers is also an essential factor in evaluating their
effectiveness. The strong robustness implies that log parsers can maintain a stable performance
when dealing with log data of diverse characteristics, indicating a superior generalizability [Jiang
et al. 2023; Le and Zhang 2023b; Xu et al. 2023b; Zhu et al. 2019]. To compare the robustness of
LILAC with all baselines, we draw the box plot illustrating the distribution of each log parser’s
metrics across all datasets, as depicted in Fig. 5.

Fig. 5. Robustness comparison between baselines and LILAC on public datasets (%)

It is obvious that LILAC not only achieves the highest accuracy but also exhibits the least
performance variance, as evidenced by its narrowest distribution range. This demonstrates that
LILAC exhibits the strongest robustness when parsing various log data. Specifically, the standard
deviations of LILAC for GA, FGA, PA and FTA are 9.3%, 6.9%, 15.2%, and 12.9%, respectively. In
contrast, these values for LogPPT are 26.0%, 27.4%, 27.6%, and 27.3%. The strong robustness of
LILAC is primarily derived from the vast pre-trained knowledge related to logs of LLMs. In addition,
the ICL paradigm in the ICL-enhanced parser adapts the LLM to the system-specific characteristics
of specific log datasets, thereby enhancing the robustness of parsing diverse log data.

Answer to RQ1: LILAC outperforms baseline methods on all metrics, with notable improvements
of 66.8% and 69.5% for FGA and FTA, respectively, compared to Drain and LogPPT. Furthermore,
LILAC exhibits the strongest robustness, reflected in the minimal performance variance when
parsing diverse log data from different systems.

5.2 RQ2: How does each design contribute to LILAC?
In this RQ, we conduct a series of experiments to investigate the contributions of two designed
modules within LILAC, i.e., the ICL-enhanced parser and the parsing cache.

5.2.1 ICL-enhanced Parser. In the ICL-enhanced parser, we have designed an effective and efficient
hierarchical candidate sampling algorithm, along with a kNN-based demonstration selection. In
this section, we aim to investigate the individual contributions of these two designs and explore
how different numbers of candidates or demonstrations will affect the performance of LILAC.
Contribution of ICL design choices. We first assess the individual contributions of the

candidate sampling and demonstration selection algorithms. Specifically, we create the following
four variants of LILAC and compare them with the original approach. 1) LILAC w/o ICL: remove
the ICL design in ICL-enhanced parser, 2) LILAC w/ random selection: replace the kNN-based
demonstration selectionwith random selection, 3) LILACw/ random sampling: replace the candidate
sampling algorithm with random sampling, 4) LILAC w/ LogPPT sampling: replace the candidate
sampling algorithm with the adaptive sampling algorithm of LogPPT.
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Table 2. Average accuracy comparison among LILAC with different strategies (%)

GA FGA PA FTA
LILAC 92.7 92.4 84.2 81.0
w/o ICL 83.5 (↓ 9.9%) 76.5 (↓ 17.2%) 62.6 (↓ 25.6%) 58.4 (↓ 27.9%)
w/ random selection 84.2 (↓ 9.2%) 80.6 (↓ 14.6%) 74.4 (↓ 11.6%) 66.7 (↓ 17.7%)
w/ random sampling 87.6 (↓ 5.5%) 80.9 (↓ 12.4%) 77.5 (↓ 8.0%) 68.3 (↓ 15.7%)
w/ LogPPT sampling 91.3 (↓ 1.5%) 84.8 (↓ 8.2%) 79.7 (↓ 5.3%) 74.9 (↓ 7.5%)

The evaluation results are depicted in Table. 2, in which the following observations can be made.
(1) The absence of the ICL design substantially negatively impacts the performance of LILAC across
all four metrics. For instance, the average FTA of LILAC experiences a considerable decrease of
27.9% when the ICL design is removed. The reason is that even though LLMs possess extensive
pre-trained knowledge, their ability to effectively handle a wide range of log data remains limited in
the absence of ICL capability. (2) Upon replacing the hierarchical candidate sampling and kNN-based
demonstration selection algorithms with random strategies, there is a respective decrease of 17.7%
and 15.7% in the average FTA, while the FGA values experience a reduction of 14.6% and 12.4%. This
underscores the significance of the quality of candidate samples and demonstrations in influencing
the performance of LLMs. (3) When we replace the original candidate sampling algorithm with
that of LogPPT, there is a varying degree of decline across all four metrics, e.g., the average FTA
is reduced by 14.2%. The reason is that the sampling algorithm of LogPPT does not consider the
issue of imbalanced template frequencies and the representativeness of the sampled candidates.
In contrast, our proposed sampling algorithm is capable of sampling diverse and representative
candidates, thereby effectively guiding LLMs to accurately parse the entire log dataset.

Impact of ICL parameter settings. In addition to the above-mentioned individual contributions
of the designed algorithms, we also conduct experiments to evaluate the performance of LILAC
using different numbers of sampled candidates and selected demonstrations.

Fig. 6. Average accuracy among different numbers of sampled candidates and selected demonstrations. (%)

The results are shown in Fig. 6. It is clear that different numbers of both candidates and demon-
strations can affect the performance of LILAC. Specifically, (1) Even though we only sampled 8
candidates and set the demonstration number greater than 3, the average FTA of LILAC is around
75%, which is much higher than LILAC without ICL design in Table. 2 (i.e., 58.4%). This suggests that
the ICL design can effectively adapt the LLM to parse various log data even when the quantity of
labeled data is limited. (2) As the number of candidates increases, all four metrics of LILAC exhibit
an improvement. For instance, when the number of demonstrations is set to 3, the average FTAs for
candidate numbers 8, 32, and 128 are approximately 75%, 81%, and 85%, respectively. This is because
the more sampled candidates can provide a broader range of semantic and pattern characteristics
in log data, which can be selected to demonstrate LLMs, thereby enabling more precise template
generation. (3) The performance of LILAC is influenced by the varying number of demonstrations
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for each query under each setting of the candidate number. In particular, the performance of LILAC
is lowest when only a single demonstration is used since a single demonstration can introduce
inductive bias into the parsing process of LLMs. However, when the number of demonstrations
exceeds three and continues to increase, the performance of LILAC exhibits fluctuations but tends
towards stability. This is because our kNN-based algorithm is capable of selecting demonstrations
that are not only similar to the queried log but also exhibit a high degree of consistency. In summary,
although the performance of LILAC is influenced by the varying number of sampled candidates
and selected demonstrations, an enhancement in the performance of LILAC is observed across all
settings when compared to LILAC w/o ICL. Moreover, the most appropriate configuration of 32
candidates and 3 demonstrations is selected as the default setting in our other experiments.

Table 3. Average accuracy comparison between LogPPT and LogPPT with parsing cache (%)

GA FGA PA FTA
LogPPT (original) 61.2 57.4 73.6 47.8
w/ parsing cache 90.8 (↑ 48.4%) 89.0 (↑ 55.1%) 78.0 (↑ 6.0%) 67.4 (↑ 41.0%)

5.2.2 Parsing Cache. One of the design objectives of parsing cache is to mitigate the inconsistency
in the answers of LLMs. To validate it, in this section, we evaluate the contribution of the parsing
cache to the performance enhancement of LILAC. A direct approach is comparing the performance
of the original LILAC with that of LILAC without the parsing cache. However, considering the
substantial size of these log datasets (averaging 3.6 million log messages per dataset) and the
overhead of querying the LLM, it is infeasible to utilize current LLMs for parsing these datasets
without the aid of parsing cache, i.e., processing line by line. Instead, we replace the ICL-enhanced
parser with a smaller language model, RoBERTa, which is used by the latest semantic-based log
parsers, LogPPT. Both RoBERTa and LLMs exhibit the common issue of unstable outputs, given
that they are both generative language models. Consequently, comparing the original LogPPT
and LogPPT with parsing cache can reflect the effectiveness of parsing cache in mitigating the
instability associated with generative language models.
The results are presented in Table. 3. It is evident that the integration of parsing cache has

substantially improved the performance of LogPPT. First, regarding the grouping-related metrics,
the mean GA and FGA of LogPPT with parsing cache have risen by 48.4% and 55.1%, respectively,
in contrast to the original LogPPT. This implies that by matching and adaptively updating parsing
cache, LILAC can ensure the consistency of templates generated by language models, thereby
improving the accuracy of grouping. Second, both the mean PA and FTA have demonstrated
respective increases of 6.0% and 41.0%. This suggests that the specifically designed refinements of
templates within parsing cache can accurately rectify the incorrect templates produced by language
models based on historical templates.

Answer to RQ2: Both designs of ICL-enhanced parser and parsing cache significantly contribute
to enhancing LILAC’s overall performance. On the one hand, the proposed ICL strategies provide
LLMs the capability of accurately parsing log messages. On the other hand, parsing cache is
effective in mitigating the inconsistency inherent in language models.

5.3 RQ3: How capable is LILAC integrated with different LLMs?
In this RQ, we compare the performance of LILAC by employing different LLMs in ICL-enhanced
parser. Specifically, we select three representative LLMs commonly used in research [Gao et al.
2023; Xu et al. 2023b], namely, ChatGPT, Davinci, and Curie. Both ChatGPT and Davinci possess a
substantial model parameter count of 175B. ChatGPT, having been fine-tuned for conversational
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Table 4. Average accuracy comparison among LILAC with different LLMs (%)

GA FGA PA FTA
ChatGPT 92.7 92.4 84.2 81.0
Davinci 91.9 (↓ 0.9%) 92.9 (↑ 0.5%) 87.1 (↑ 3.4%) 81.5 (↑ 0.6%)
Curie 90.1 (↓ 2.8%) 87.6 (↓ 5.2%) 77.8 (↓ 7.6%) 71.2 (↓ 12.1%)

tasks, provides a superior generation speed. Conversely, Davinci has enhanced capabilities in
executing text-generation tasks. Furthermore, Curie is distinguished by the smallest parameter size,
amounting to 13B.
Table. 4 demonstrates the average metrics of LILAC with different LLMs, from which we can

find consistently high performance across all LLMs. In detail, both LILAC with ChatGPT and
Davinci have achieved exceedingly high average metrics, due to their vast parameter volume and
extensive pre-training knowledge. We have also observed that the majority of these four metrics
for Davinci marginally surpass those of ChatGPT, e.g., FTA augmented by 0.6%. The reason could
be that Davinci is more focused on text-generation tasks, which aligns with the log parsing task.
Furthermore, we can observe that the performance of LILAC with Curie is the most inferior, e.g.,
the average FTA of Curie is 12.1% lower than that of ChatGPT. This is due to the limited model
parameters and pre-training knowledge of Curie, signifying a poorer text processing capability, as
well as a weaker ICL capacity [Wang et al. 2023b]. However, LILAC with a comparatively smaller
LLM can still achieve an accuracy surpassing all existing log parsers. These results demonstrate
that LILAC can be generally applied to different LLMs, maintaining high accuracy.

Answer to RQ3: The performance of LILAC can be influenced by the capabilities of LLMs. Nev-
ertheless, LILAC is able to consistently achieve high performance, even when utilizing relatively
smaller LLMs.

5.4 RQ4: How efficient is LILAC in processing large-scale log data?
Efficiency is of paramount importance in the practical application of log parsers, given the substan-
tial volume of logs [Le and Zhang 2023b; Wang et al. 2022; Zhu et al. 2019]. LILAC encompasses
two primary time costs, i.e., the time of the candidate sampling process and the parsing process.
In this RQ, we assess the efficiency of these two procedures within LILAC, utilizing the public
Loghub-2.0 datasets as described in Sec. 4.2.

Table 5. Average sampling time of LILAC and LogPPT algorithms on large-scale datasets (seconds)

8 candidates 16 candidates 32 candidates 64 candidates 128 candidates
LogPPT 284.1 629.3 1303.9 2779.6 5396.9
LILAC 19.2 19.3 19.3 19.3 19.4
Speed up (↑) 14.8 × 32.6 × 67.6 × 144.0 × 278.2 ×

5.4.1 Candidate Sampling Efficiency. Although Xu et al. [2023b] have proposed a DPP-based
sampling algorithm for log parsing, calculating pair-wise distances between all log messages makes
it infeasible for execution on large-scale datasets. In this section, we perform the sampling algorithm
of LILAC and LogPPT on all datasets and calculate the average sampling time. The results are
shown in Table. 5, from which we can conclude that the efficiency of the sampling algorithm within
LILAC significantly surpasses that of the LogPPT. For instance, when sampling 32 candidates,
the algorithm of LogPPT requires more than 1300 seconds, whereas LILAC only necessitates 19.3
seconds, achieving a speedup of 67.6. Moreover, the time cost of the LogPPT sampling algorithm
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increases linearly with the number of sampled candidates as it employs an iterative approach. In
contrast, the time cost of the LILAC sampling algorithm remains stable regardless of the number of
candidates sampled. The reason is that the time overhead of LILAC’s sampling algorithm is almost
on hierarchical clustering, which is efficient for handling extensive log data.

5.4.2 Parsing Efficiency. In this section, our primary focus is on assessing the efficiency of the
parsing process within LILAC. More specifically, we have recorded the execution times for all
baselines and LILAC with ChatGPT on all log datasets. Furthermore, we have separately recorded
the cache operation time of the parsing cache within LILAC and the time expended on querying the
ICL-enhanced parser. Specifically, the cache operation time encompasses the time cost for cache
matching and cache updating operations, whereas the query time represents the total duration from
initiating a query to the ICL-enhanced parser to receiving the generated templates. We calculate
the average parsing time across all log datasets and plot a bar chart. The detailed parsing times are
available in our replication package [rep 2023]. According to the results in Fig. 7, we can see that
LILAC exhibits efficiency comparable to that of Drain, the most efficient syntax-based log parser
currently available. In detail, LILAC requires 569.6 seconds to process an average of 3.6 million log
messages, while this time of Drain is 425.4. Conversely, other semantic-based log parsers, including
UniParser and LogPPT, despite the utilization of GPU acceleration, only achieve low efficiencies,
trailing LILAC by 4.03 and 7.19 times, respectively.

Fig. 7. Efficiency of baselines and LILAC on large-scale datasets

Besides, across all datasets, the average processing time for parsing cache in LILAC is 376.5s,
accounting for approximately 66.1% of the total time. This is less than the average processing time of
Drain, suggesting that the cache matching and updating operations of the parsing cache are highly
efficient. Correspondingly, the time consumed by querying the ICL-enhanced parser averages at
193.1s, representing 33.9% of the total time. We further conduct a statistical analysis on the number
of queries to the LLM. The mean value of query numbers is 279.7, while the average number
of ground-truth templates is 249. The observed difference is caused by the incorrect templates
generated by the LLM, which results in failed matching of the parsing cache and consequently
leads to unnecessary queries. However, LILAC can effectively keep this number minimal, thereby
ensuring efficiency. When compared with the existing LLM-based log parsing approaches [Le and
Zhang 2023a; Liu et al. 2023b; Xu et al. 2023b], which necessitate over 3.6 million queries, LILAC
markedly diminishes the number of queries to LLMs. This makes the application of LLMs for log
parsing practically feasible.

Answer to RQ4: LILAC substantially reduces the number of queries to the LLM by matching the
parsing cache to prevent duplicate queries. Hence, the efficiency of LILAC surpasses semantic-
based methods by 4.03 to 7.19 times and is comparable to the fastest syntax-based methods.
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6 DISCUSSION
6.1 Practicality of LILAC
LILAC is designed to leverage the power of LLMs for log parsing in production systems. To reduce
the cost of querying LLMs and alleviate the inherent instability of query results, LILAC adopts
the adaptive parsing cache. In addition, for each query, since the number of tokens in a single log
message or template is generally small (e.g., tens to hundreds of tokens), LILAC would not incur a
substantial cost of querying LLMs. Additionally, LILAC introduces effective candidate sampling
and demonstration selection algorithms to facilitate the ICL capability of LLMs in log parsing.

It is worth noting that LILAC is compatible with traditional language models, such as RoBERTa.
According to the experimental results in Sec. 5.2.2, LILAC integrated with traditional language
models can also achieve higher performance than state-of-the-art log parsing methods. When
using traditional language models, users can utilize the proposed candidate sampling algorithm to
obtain high-quality data for model training or tuning. We believe the above features make LILAC a
practical framework that can be deployed in real-world systems.

6.2 Threats to Validity
Data Leakage. Since LLMs are trained on huge volumes of data, one potential threat is the data
leakage problem. Particularly, the adopted LLM in LILACmay have been trained on open-source log
datasets, leading to the memorization of ground-truth templates as opposed to performing inference.
However, according to our experiments, the performance of LILAC without ICL is significantly
inferior to LILAC with ICL, implying a low probability of direct memorization. Furthermore, LILAC
employs the gpt-turbo-3.5-0613 model for most of the experiments. It is noteworthy that updates
for this model were discontinued before the ground-truth templates in Loghub-2.0 were publicly
available. Therefore, the probability of data leakage within our experiment is negligible.
Privacy Issue. From the perspective of enterprises, log messages are sensitive data, as they often
encompass a substantial amount of customer and service information. Employing external LLMs to
process internal log data may pose risks to privacy and security problems. Actually, LILAC is a
general framework that can support a variety of language models. Users can integrate their own
language models into LILAC, thereby avoiding privacy issues.
Manual Labeling Effort. To utilize the ICL capability of LLMs, manual annotation is required to
provide the ground-truth templates of the sampled log messages. To alleviate the labeling effort
associated with ICL, we propose an efficient candidate sampling algorithm designed to sample a
compact set of diverse and representative log messages. Our experimental results proved that even
with a small number of labeled log messages (e.g., 32), LILAC can yield a significantly improved
performance.

7 RELATEDWORK
Log parsing has emerged as an active research topic in recent years [He et al. 2016; Jiang et al. 2023;
Khan et al. 2022; Zhu et al. 2019]. Existing log parsers can be divided into two groups: syntax-based
and semantic-based log parsers. In specific, syntax-based log parsers can be further subdivided
into three categories. (1) Frequency-based parsers: These log parsers [Dai et al. 2020; Nagappan
and Vouk 2010; Vaarandi 2003; Vaarandi and Pihelgas 2015] utilize frequent patterns of token
position or n-gram information to distinguish the templates and parameters in log messages. (2)
Similarity-based parsers: These log parsers [Hamooni et al. 2016; Shima 2016; Tang et al. 2011]
compute similarities between log messages to cluster them into different groups and then extract
the constant parts of log messages. (3) Heuristics-based parsers: These log parsers [Du and Li 2016;
He et al. 2017; Jiang et al. 2008; Makanju et al. 2009; Messaoudi et al. 2018; Mizutani 2013; Wang
et al. 2022] employ various heuristic algorithms or data structures to identify the log templates
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based on designed characteristics. Semantic-based log parsers can achieve higher parsing accuracy
by mining semantics from log messages, which is crucial in some downstream tasks [Huo et al.
2023; Li et al. 2023b]. These methods typically necessitate labeled log data for model training or
tuning. To be precise, a subset of these log parsers [Huo et al. 2023; Li et al. 2023b; Liu et al. 2022]
formulate log parsing as a token classification problem, employing bidirectional long short-term
memory for training. In addition, LogPPT [Le and Zhang 2023b] tunes a pre-trained language
model (e.g., RoBERTa) to perform log parsing.

However, recent benchmark studies [Jiang et al. 2023; Khan et al. 2022] have identified that the
performance of these log parsers is found to be inadequate when dealing with large-scale, complex
log data. This observation motivates our work, which aims to utilize the capabilities of LLMs for
more accurate log parsing. Recently, several studies have been conducted to explore the utilization
of LLMs for log analysis, specifically log parsing. The study by Le and Zhang [2023a] is the pioneer
in investigating the performance of LLMs in log parsing, which demonstrates the potential of
LLMs in accomplishing log parsing. Xu et al. [2023b] propose LogDiv, a method that leverages the
ICL capability of LLMs to achieve more accurate log parsing. To adpot the ICL paradigm, LogDiv
transforms all log messages into embeddings and computes pair-wise distances to sample log
messages for demonstration, which is infeasible when dealing with an enormous volume of log
messages. Besides, these existing methods solely employ LLMs to sequentially parse each log in a
single query. Hence, they do not address the challenges of efficiency and consistency inherent in
utilizing LLMs to log parsing. This makes them impractical for utilization in real-world scenarios.
In contrast, our proposed method, LILAC, addresses these issues by combining the adaptive parsing
cache with the ICL-enhanced parser, enabling accurate and efficient LLM-based log parsing.

8 CONCLUSION
In this paper, we present LILAC, a practical log parsing framework using LLMs with adaptive
parsing cache. To utilize the ICL capability to adapt LLMs to parse various log data, LILAC adopts
effective and efficient candidate sampling and demonstration selection algorithms to select high-
quality demonstrations. Besides, LILAC employs the adaptive parsing cache to store log templates,
and specifically tailored cache matching and adaptive updating operations help mitigate the in-
herent inconsistency and inefficiency of LLMs. Extensive experiments on large-scale log datasets
demonstrate that LILAC outperforms all state-of-the-art baselines with high efficiency. We believe
that LILAC would benefit both practitioners and researchers in the field of log analysis.
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