
Survey of Fault-tolerant LLM Training
JIANG, Zhihan
Ph.D. Student

The Chinese University of Hong Kong
2023-11-16

Outline

Fault-tolerent LLM Training

Current Status

Redundant Computaion

Optimized Checkpointing

Approximation (dropping samples)

Outline

Fault-tolerent LLM Training

Current Status

Redundant Computaion

Optimized Checkpointing

Approximation (dropping samples)

4

Why we need fault-tolerant LLM training?

The sizes of LLMs and training data are scaling up The training machines and time are also increasing

the computational demand for large-scale AI models doubles approximately every 10 months

Compute trends across three eras of machine learning, 2022

• As the size of the model parameters and training machines increases, the probability
of failures during training also significantly increases.

5

Why we need fault-tolerant LLM training?

OPT: Open Pre-trained Transformer Language Models (175B, from Meta): 992 A100 80GB, 2month

All in all, working around infrastructure
issues has dominated the last two weeks

of the team's time, given that these
hardware issues can take the experiment

down for hours at any time of the day.

Since the sleepless night of Thanksgiving break, this past week has been filled
with gradient overflow errors / loss scale hitting the minimum threshold

(which was put in place to avoid underflowing) which also causes training to
grind to a halt. We restarted from previous checkpoints a couple of times.

35+ manual restarts

100+ cycling hosts

70+ automatic restarts

6

Why we need fault-tolerant LLM training?
LLMs Training Task Error Statistics (From May 2023 to July 2023, running on SenseCore cluster)

TRANSOM: An Efficient Fault-Tolerant System for Training LLMs (from SenseTime & BUPT)

Attention to the fault tolerance of large language models is increasing!

Outline

Fault-tolerent LLM Training

Current Status

Redundant Computaion

Optimized Checkpointing

Approximation (dropping samples)

8

Parallel Training in large-scale DNNs

Data Parallelism Pipeline Parallelism

Naive Pipeline

Optimized Pipeline
Tensor Parallelism

• Model sizes are increasing, the cost of training is higher

• Spot instances can lower costs, but have high failure rates
• up to 70% cheaper
• Preemptions can be unavoidable

• Redundant Computation (RC)
• inspired by disk redundancies such as RAID
• each node carries its own shard of layers and its successor’s shard (exploit locality)

9

Bamboo: pipeline redundant computation

[NSDI23] Bamboo: Making Preemptible Instances Resilient for Affordable Training of Large DNNs (from UCLA & MSR)

Challenge 1: high overhead
• pipeline parallelism has bubbles

• use this idle time to minimize redundancy overhead

10

Bamboo: pipeline redundant computation

[NSDI23] Bamboo: Making Preemptible Instances Resilient for Affordable Training of Large DNNs (from UCLA & MSR)

Challenge 2: high GPU memory usage
• swap out the intermediate results of each node’s

FRC into the node’s CPU memory (offload less
frequently used tensors to CPU memory)

Challenge 3: consecutive failure
• make consecutive nodes in each pipeline

come from different zones

compared to on-demand instances

• Scenarios: hybrid-parallel training (DP + PP)

• Model state redundancy in DP is free redundancy

11

Oobleck: scheduling pipeline templates

[SOSP23] Oobleck: Resilient Distributed Training of Large Models Using Pipeline Templates (from umich & Amazon)

Can we leverage this redundancy in DP for reliability?

The core design: pipeline templates
• a pipeline specification that defines how many nodes should

be assigned to a pipeline, how many stages to create, and how
to map model layers in stages to GPUs.

Decoupling planning (pipeline template generation) from
execution (pipeline instantiation) enables fast failure recovery;

Oobleck Planning Algorithm

• Generating pipeline templates
• Node specification
• GPU–Stage mapping

• Pipeline instantiation
• Enumerating all instantiation options
• Calculating throughput with batch distribution

• Dynamic Reconfiguration
• Pipeline re-instantiation
• Batch redistribution

• Other designs
• Model synchronization between heterogeneous pipelines

in a layer granularity

12

Oobleck: scheduling pipeline templates

[SOSP23] Oobleck: Resilient Distributed Training of Large Models Using Pipeline Templates (from umich & Amazon)

Outline

Fault-tolerent LLM Training

Current Status

Redundant Computaion

Optimized Checkpointing

Approximation (dropping samples)

14

CheckFreq: fine-grained and pipelined checkpointing

[FAST21] CheckFreq: Frequent, Fine-Grained DNN Checkpointing (from UT Austin & MSR)

Three main challenges in large-scale DNNs checkpointing:
• Checkpoint stalls: how to minimize cost of checnkpoint?
• Checkpointing frequency: how offten to checkpoint?
• Data invariant: how to resume correctly?

Trade-off between low-overhead and high frequency of checkpointing

Checkpoint of a 128B LLM:
~ 1.536 TB

15

CheckFreq: fine-grained and pipelined checkpointing

[FAST21] CheckFreq: Frequent, Fine-Grained DNN Checkpointing (from UT Austin & MSR)

Checkpoint stalls: how to minimize cost of checkpoint?

• Synchronous checkpointing introduces checkpoint stalls => Runtime overhead
• Low-cost checkpointing mechanism that is split into two pipelined operations:

• Snapshot() : Serialize and copy into a user-space buffer
• Persist() : Write out the serialized contents to disk

16

CheckFreq: fine-grained and pipelined checkpointing

[FAST21] CheckFreq: Frequent, Fine-Grained DNN Checkpointing (from UT Austin & MSR)

Checkpointing frequency: how often to checkpoint?

Data invariant: how to resume correctly?

automatically profiles metrics and determines frequency

epoch seeded psuedo-random transformations

17

CheckFreq: fine-grained and pipelined checkpointing

[FAST21] CheckFreq: Frequent, Fine-Grained DNN Checkpointing (from UT Austin & MSR)

Evaluation on 7 different DNNs:

1. CheckFreq reduces checkpoint stalls 2. CheckFreq reduces checkpoint overhead

3. CheckFreq lowers recovery time: from hours to seconds

• Existing methods (e.g., CheckFreq) still cannot
fully utilize the parallelism among computation,
communication, and checkpointing

18

LightCheck: pipelined checkpoint to PM

[ICCD23] A Cost-Efficient Failure-Tolerant Scheme for Distributed DNN Training (from HUST)

LightCheck pipelines checkpointing with comp. and comm. in a layer-wise way

• Leverage the data dependency.

• Multiple nodes synchronize the model
parameters layer-by-layer during communication.

Persistent Memory (PM) has received extensive attention
• Large capacity with near-DRAM performance
• The unified virtual addressing (UVA) technique enables

zero-copy access over PCIe between GPU and PM
• The asynchronous layer-wise checkpointing is done via

CUDA streams and events

19

LightCheck: pipelined checkpoint to PM

[ICCD23] A Cost-Efficient Failure-Tolerant Scheme for Distributed DNN Training (from HUST)

Evaluation

Three main factors in checkpoint:
• checkpoint time

• checkpoint frequency

• retrieval time

Leverage the high bandwidth of CPU memory to achieve fast failure recovery!
• How to maximize the probability of a successful failure recovery from CPU memory?

• how to minimize the interference of checkpoint traffic with model training?

20

GEMINI: hierarchical storage of checkpoints

[SOSP23] Gemini: Fast Failure Recovery in Distributed Training with In-Memory Checkpoints (from Rice & Amazon)

Local
CPU Memory

Remote
CPU Memory

Remote
Persistent Storage

hierarchical storage communications

• Maximize the probability of a successful failure recovery from CPU memory
• Store redundant checkpoints and proposes a placement strategy that maximizes the probability

21

GEMINI: hierarchical storage of checkpoints

[SOSP23] Gemini: Fast Failure Recovery in Distributed Training with In-Memory Checkpoints (from Rice & Amazon)

• Minimize the interference of checkpoint traffic
with model training?
• Design a deliberate communication scheduling

algorithm for interleaving these two types of traffic
to minimize the interference on training throughput.

• Method: online profiling for several iterations of
training (e.g., 20) without checkpointing.

• Other difficulties and approaches

22

GEMINI: hierarchical storage of checkpoints

[SOSP23] Gemini: Fast Failure Recovery in Distributed Training with In-Memory Checkpoints (from Rice & Amazon)

Difficulty

Extra GPU memory consumption

Difficulty

Local GPU-to-CPU copy overhead.

Approach

Partitioning checkpoint

Approach

Pipelining checkpoint transmission.

• Recovery training from failures
• software failures
• hardware failures

• replicas exist
• replicas not exist

• Evaluation

23

GEMINI: hierarchical storage of checkpoints

[SOSP23] Gemini: Fast Failure Recovery in Distributed Training with In-Memory Checkpoints (from Rice & Amazon)

24

SWIFT: update-undo and logging-based recovery

[PPoPP23] Swift: Expedited Failure Recovery for Large-scale DNN Training (from HKU & OneFlow)

• The overhead of checkpointing is high

• Crash-consistency problem: parameters from some
workers are updated while the others are not.

Swift Design:

• Update-undo (replica available):
• survivors undo the update for the updated parameters

• Logging-based recovery (replica unavailable):
• is done asynchronously
• records intermediate communication (i.e., intermediate

activations in the forward pass and the gradients in the
backward pass)

• replacement workers download logs for recovery

25

Check-N-Run: reduce checkpoint size

[NSDI22] Check-N-Run: a Checkpointing System for Training Deep Learning Recommendation Models (from Facebook)

• Checkpoints of large-scale recommendation system (RS) is essential

Failure recovery Migrating training jobs

Publishing snapshotsTransfer learning

• Challenges of checkpointing

Accuracy

Frequency

Write bandwidth

Storage capacity

at each iteration only a tiny fraction of the model is updated

Recommendation Model Architecture

26

Check-N-Run: reduce checkpoint size

[NSDI22] Check-N-Run: a Checkpointing System for Training Deep Learning Recommendation Models (from Facebook)

• Strategy 1: differential checkpointing
• Motivation: model accesses are sparse
• One-Shot Differential Checkpoint
• Consecutive Incremental Checkpoint
• Intermittent Differential Checkpoint

• Strategy 2: checkpoint quantization
• Compress checkpoint without degrading

training accuracy
• Uniform quantization
• Non-uniform quantization using k-means
• Adaptive uniform quantization

• Strategy 3: Decoupling
• Separate snapshot and persist operations. Overall ResultsQuantization Strategies

Differential Strategies

Outline

Fault-tolerent LLM Training

Current Status

Redundant Computaion

Optimized Checkpointing

Approximation (dropping samples)

CPR: trade-off between overhead and accuracy

CPR: Understanding and Improving Failure Tolerant Training for Deep Learning Recommendation with Partial Recovery (from Facebook) 28

Failures are frequent in large-scacle model training

• Full recovery will lead to the lost of computation

• Partial recovery can harm the model accuracy

Can we balance between the overhead and the accuracy?

Accuracy
of

partial
recovery

Overhead
of

full
recovery

Portion of Lost Samples (PLS)

• the portion of the training data samples whose effect on the model was lost due to a failure

• is a function of checkpoint saving interval, the failure rate and the number of parameter server nodes

• can be used as a metrics to trade-off the performance overhead and the model accuracy

CPR selects between full recovery and partial
recovery based on the benefit analysis

29

CPR: trade-off between overhead and accuracy

CPR: Understanding and Improving Failure Tolerant Training for Deep Learning Recommendation with Partial Recovery (from Facebook)

• PLS-based checkpointing
• first choose the saving frequency based on specified PLS
• trade-off between the overheads of two strategies

• if the expected benefit is small, choose full recovery
• otherwise, choose partial recovery

• Frequency-based prioritization
• With the limited I/O bandwidth, prioritizing to save important

updates can make the final model quality to improve.
• SCAR: prioritize saving parameters with larger changes
• CPR-MFU: prioritize saving the most-frequently-used parameters
• CPR-SSU: sub-sample and prioritize used embedding vectors The trade-off in CPR

30

Conclusion

• Pipeline RC in the bubble time to
avoid high overhead

• Leverage the inherent redundancy
in DP

• Decoupling the planning from the
execution

• Pipeline checkpointing with

computation and communication.

• Leverage hierarchical storage to

improve checkpointing frequency

• Avoid the lost of computation

• Leverage partial features and

quantization to reduce size

Redundant Computation Optimized Checkpointing Approximation

• Trade-off between the

overhead of full recovery and

accuracy of partial recovery

31

Conclusion

Automated anomaly detection Efficient failure recovery

Future direction

TRANSOM: An Efficient Fault-Tolerant System for Training LLMs

