B Rl e = | i

Survey of Fault-tolerant LLM Training

JIANG, Zhihan
Ph.D. Student
The Chinese University of Hong Kong
2023-11-16

W Huawer (A)ARISE

Software Engin

R G N

o The Chinese University of Hong Kong

Outline

Outline

» Why we need fault-tolerant LLM training?

Num. Parameters Price / 1B Tokens
- AWS AWS
Throughput | Hours /1B | Multi-node Oracle [p4d.24xlarge] | [p4d.24xlarge]
Model A100-40GB | (tokens/sec)| Tokens speedup [BM.GPUA4.8] on-demand spot
GPT3-125M 8 191,693 145 1.00x $35.36 $47.49 $14.24
1008 GPT3-125M 32 739,328 038 3.86x $36.67 $49.25 $14.77
[sy |
pe—— GPT3-125M 128| 2471936 om 12.90x $43.87 $58.92 $1767

Turing-NLG

GPT3-350M 8 69,427 400 1.00x $97.62 $131.1 $39.33

GPT-NeoX-20B
= Lo [ez
_ GPT3-350M 32 269,926 103 3.89x $100.44 $134.89 $40.46
legatron

GPT3-350M 128 958,464 029 13.81x $113.14 $15196 $4558

DialogGPT DALL.E2 magen GPT3-760M 8 57,549 483 100x $117.77 $15817 $47.45
1B L- Stable _-

iasoel GPT3-760M 32 218,317 127 3.79x $12418 $166.78 $5003

viT GPT3-760M 128 696,320 0.40 12.10x $155.74 $209.16 $62.74

a i GPT3-1.3B 8 38,912 714 100x $174.18 $233.93 $7017

oo Sl e i By GPT3-1.3B 32 152,781 182 3.93x $177.45 $238.32 $71.49
| } Alphafold + i

2018 2019 2020 2021 [l 2023 GPT3-1.3B 128 561152 0.50 14.42x $193.25 $259.55 $77.86

L3 L3 L3 L3 L3 L3 L3 L3 L3 L3
The sizes of LLMs and training data are scaling up The training machines and time are also increasing

the computational demand for large-scale Al models doubles approximately every 10 months

Compute trends across three eras of machine learning, 2022 4
T

2» Why we need fault-tolerant LLM training?

* As the size of the model parameters and training machines increases, the probability
of failures during training also significantly increases.

B x 3

w N EE.

35+ manual restarts u | Lt

ﬂ N | -I-IIIIIIIII

70+ automatic restarts ; A -- -------
T HEEEN

U]

Ay,

100+ cycling hosts ---====---.-

All in all, working around
has dominated the last two weeks
of the team's time, given that these
hardware issues can take the experiment
down for hours at any time of the day.

Since the sleepless night of Thanksgiving break, this past week has been filled
with gradient overflow errors / loss scale hitting the minimum threshold

(which was put in place to avoid underflowing) which also causes training to
grind to a halt. We restarted from previous checkpoints a couple of times.

OPT: Open Pre-trained Transformer Language Models (175B, from Meta): 992 A100 80GB, 2month 5
T

2» Why we need fault-tolerant LLM training?

LLMs Training Task Error Statistics (From May 2023 to July 2023, running on SenseCore cluster)

Error Categorization Number of Tasks Root Cause
; Due to synchronization anomalies of storage servers, significant variations in the time overhead for file storage or object storage occur across different nodes.

Storage Read/Write Errors 34 . . e e) » . o

This leads to communication waiting timeout or socket timeout in tasks.
Network Communication Errors 13 Incorrect insertion of IB network card; Uneven load distribution in RDMA traffic;
)) Misconfigured RoCE network switch; Expired ARP cache IP; Ethernet card or link is not connected.
GPU ECC errors; GPU failure; Node not ready; Insufficient shared memory; Pod sends SIGTERM signal to exit;
Node Hardware and Software Errors 66

Pod OOMK:illed; Node image pull timeout; Local storage exceeding limit error.
Error in creating duplicate files with the same name; Data type conversion error; Python Segmentation fault;
User Code and Training Environment Errors 179 CUDA runtime version mismatch with CUDA driver; AttributeError; torch.cuda.OutOfMemoryError;
RuntimeError; ModuleNotFoundError; NameError; AssertionError; OSError.
System hang without error output; Occasional socket timeout errors without specific issues identified during troubleshooting;

Stlices 33 Random occurrences of Pod processes with exit code -9 errors; Pod startup failures.

Approach Fault Tolerant ~ Anomaly Detection = Checkpoint Optimization
DeepSpeed X X v
PyTorch Elastic v X X
Horovod Elastic v X v
Singularity v X v
DeepFreeze X X v
PAI v X X
ModelArts v v X
Azure X X v
TRANSOM v v v

Attention to the fault tolerance of large language models is increasing!

TRANSOM: An Efficient Fault-Tolerant System for Training LLMs (from SenseTime & BUPT) 6
T

Outline

3 Parallel Training in large-scale DNNs

@® Forward @ Backward Gradient update O Idle
] X]] forward
7 7 7 7 EEE— > >
Model Model Model odel &
Copy Copy Copy Copy Layer Layer Layer Layer Worker 4 - e, y
a g 4
%,
“ oy,
0 1 2 3 Worker 3 Us
GPUO GPU 1 GPU 2 GPU 3 backward Worker 2 U,
J
n— — — — Worker 1 “Bubble” of idle time n Uy

\\ // E E E Naive Pipeline
PN

dataset GPUO GPU 1 GPU 2 GPU 3 ® Forward @ Backward Update O Idle
. . . GPipe
Data Parallelism Pipeline Parallelism
Worker 4 Fa(1) Fa(2) !. Ba(1) Ba(2) Us
d Data Parallel Rank 0 h Worker 3 Fs(1) Fs(2) Bs(1) Bs(2) Us

Pipeline Stage 1

Pipeline Stage 2 Pipeline Stage 3
Worker 2 Fa(1) Fa(2) . Ba(1) Ba(2) B,(S) U, Fa(5)

Worker 1 | Fi(1) Fi(2) . “Bubble” of idle time Bi(1) 81(4) U; Fu(5) Fi(6)

°
g
H
B
H
2
=|
M
H

MP-3 MP-2 MP-1 MP-0

2 4
2 H
2 2
H -
5 H
b b

2
H H

111

Non-distributed Training time

Network Layers 0-7 Network Layers 16-23 Network Layers 24-31

Network Layers 8-15

PipeDream
Cc = A X B
/ Worker 4 Fa(1) Ba(1) Fa(2) B Fu(5) Ba(5) Fa(6)
Y
Il-gath:
along column o Data Parallel Rank 1 Worker 3 16)) Fo(5) X Fo(6) B(5)
9 Pipeline Stage O Pipeline Stage 1 Pipeline Stage 2 Pipeline Stage 3
~|.Fal [= - \ T B o
— _" Worker 1 | Fu(1) Fi(2) e Bil) Ful5) Bu(2) Fi(6) 1)
Column-Splitting Tensor Parallel g ~ g ~ { Training time
;'_/
Network Layers 0-7 Network Layers 8-15 Network Layers 16-23

Optimized Pipeline
Tensor Parallelism

J» Bamboo: pipeline redundant computation

* Model sizes are increasing, the cost of training is higher

* Spot instances can lower costs, but have high failure rates
A100 (target = 64) V100 (target = 32)

d Up tO 70% Chea per 60 H ||1’ l Hard to predict!
20

* Preemptions can be unavoidable

w

o
[y
w

Instances
N
o

Instances

[y
o

w
o
w

N
o
o

e Redundant Computation (RC)
* inspired by disk redundancies such as RAID o5 Lo 5 TA 5 N S
* each node carries its own shard of layers and its successor’s shard (exploit locality)

i /_\ /_\\ /\ J, Input
Active Stage Redundant Stage Input A 7”4 Za

\ / —> FNC1 FRC2 FNC2 FRC3 FNC3 FRC4 FNC4 FRC1
1 1 1 T T

1 T T

[| \./ INode1] INode? 'Node3! ! Noded!
Stage 0 | Stage 1 Stage 2 | Stage 0 v v v v v v 2 v
L) ‘\ BNC1 | BRC2 BNC2 = BRC3 BNC3 = BRCA BNC4 = BRCL

[NSDI23] Bamboo: Making Preemptible Instances Resilient for Affordable Training of Large DNNs (from UCLA & MSR)

J» Bamboo: pipeline redundant computation

. Node i B F | R B F | R
Challenge 1: high overhead |
Nodei+l | F | R B F | R B F
* pipeline parallelism has bubbles Node i+2 B F | R B F | R
* use this idle time to minimize redundancy overhead [JForward []Backward []Redundant
Model Dataset Samples D P % 7
. ° ResNet-152 [22] ImageNet [32] 300,000 4 12 -
Challenge 2: high GPU memory usage VGGA9[63] ImageNetl2] LOOD0OO 4 6§l
AlexNet [32] ImageNet [32] 1,000,000 4 6 §’
* swap out the intermediate results of each node’s gg}gﬁgfgfﬁﬂ gﬁﬂiﬁ?ﬁ?im 200000 46 T E
FRC into the node’s CPU memory (offload less GPT-2 [49] Wikicorpus En [15] 500,000 4 12
0 % 16% 8% 16%
frequently used tensors to CPU memory) Preemption Rate
ST VRV I ST 9 I e
: %] :GM -ﬁ‘v—bl__rg Rl N % N
Challenge 3: consecutive failure : :
. . L P e LT ' PO S
« make consecutive nodes in each pipeline ULWM SEaivin i L,W{WU 1 ol
come from different zones * fom|
(a) T'[m‘r(ahlce) (b) Trainin;mjf(;;urzughput (©) Mon;:;:; rs'Cost (d) T\;aihue)

compared to on-demand instances

[NSDI23] Bamboo: Making Preemptible Instances Resilient for Affordable Training of Large DNNs (from UCLA & MSR) 10
T

» Oobleck: scheduling pipeline templates

Data Parallel Rank 0

* Scenarios: hybrid-parallel training (DP + PP) My — e — e =

| Network Layers 0-7 Network y

layers8-15 | | Network Layers 16 -23 431

* Model state redundancy in DP is free redundancy 1111 IX60 Anin 15l

Can we leverage this redundancy in DP for reliability? g s —

Number of Nodes (V) = 13

Layers 24-31
Model Memory Requirements Model

| CH_H_H_ Pipeline with 4 Nodes || Failed Nodes | ralimagresTrahalll | 30 el s

so st s2 3 S0 s s2 S8 A:2 nodes L1C] 5 WiEm
Pipeline0 { | H{ FH{] Pipelineo { | B: 3 nodes [[| | I
R —, T T e — C:4nodes HIEN c NN (st 83 H s4]
Pipetine 1 ={ =] Pipelinet 1f M — S: Stage

I-l:l—\ ________ Ve —:l 3 Pipeline Templates
Pipeline 2 O] Pipetine2 T A
""""""""""""" Node Specification GPU —Stage Mapping

(a) Failures happen to nodes with the (b) Failures in random places (all

G ting pipeline templates (§4.1
same stage (S1 lost, not recoverable) stages alive, recoverable) (w) Generating pipeline templates (34.1)

h@ Job Submission Oobleck
. ° ° Pipeline Template Distributed .Execution
The core design: pipeline templates { ot | @ |
. . o o . . Pipeline
* a pipeline specification that defines how many nodes should Templates | (_Batch Disrbutor)

T
Node Change Monitor

be assigned to a pipeline, how many stages to create, and how -)

New Node Addition ~ 1 Pipelines

1 Agent ailure Detection @ H nstantiation
to map model layers in stages to GPUEs. R j

v ® Reconfiguration

Node Cluster

Decoupling planning (pipeline template generation) from

Agent ” Agent Agent H--A-g-e-n? ‘: Agent ‘ Agent
. R R {|[_Pipeline Execution | [Pipeline Execution
execution (pipeline instantiation) enables fast failure recovery; | Copus J[arus | Copus JY_oeus I ceus] [ceus |,

[SOSP23] Oobleck: Resilient Distributed Training of Large Models Using Pipeline Templates (from umich & Amazon)
T

» Oobleck: scheduling pipeline templates

Oobleck Planning Algorithm Nrmber of Nodes (- 15 -
Model Memory Requirements | ‘ Model ‘ EEm Plan 1 N
M : : Fault Tolerance Threshold () : EEEN Templates #instances Minibatch
* Generating pipeline templates ' S LI ppane |, L7 T
A: 2 nodes [][] w Templates X
& DEm |
* Node specification B:3nodes MMM 1oNoces — BEIEE e =T
C: 4 nodes “ C lllllll Global Batch C ---- x2 8 ...
. — 1 S: Stage ™
G P U_Sta ge m a p p I n g 3 Pipeline Templates ’ Fault Ti?erance ﬁgiﬁelénes Totalzgatch Best Plan
Node Specification GPU—Stage Mapping Threshold=3 . oces
i P i p e I i ne i N Sta nt i ati on (a) Generating pipeline templates (§4.1) (b) Pipeline instantiation (§4.2)
* Enumerating all instantiation options --n LE C nn [-A
!.! !!. [i Failed Nodes

Calculating throughput with batch distribution

(a) A node failure in a 4-node pipeline. We have a 3-node pipeline template,
thus a new pipeline with 3 nodes is instantiated, which replaces the existing

* Dynamic Reconfiguration
[| | | — EE
[} 1 1 - 1 1 1 Move to another
Pipeline re-instantiation T o i o A
-]

e Batch redistribution K

(b) A node failure in a 2-node pipeline. Since there is no template for one node,
it gets another node from another pipeline to keep the 2-node pipeline. Two

M affected pipelines reinstantiate or reconfigure themselves.
e Other designs -

[o 5 EE
0 A B] + [C Dl
o . . o Sl Merge pipelines DI:I
* Model synchronization between heterogeneous pipelines Dﬁ }_M;D

. . L]
in a layer granularity

(c) A node failure in a 2-node pipeline. Because it cannot borrow a node from
any other pipeline, it is merged with another pipeline.

[SOSP23] Oobleck: Resilient Distributed Training of Large Models Using Pipeline Templates (from umich & Amazon) 12
T

Outline

J» CheckFreq: fine-grained and pipelined checkpointing

Three main challenges in large-scale DNNs checkpointing:
* Checkpoint stalls: how to minimize cost of checnkpoint?

* Checkpointing frequency: how offten to checkpoint?
* Data invariant: how to resume correctly?

Any interruption can wipe out the model parameters learned so far in memory,

restarting this expensive process!

Checkpoint of a 128B LLM:
~1.536 TB

A Epoch boundaries

In memory

Wasted GPU cycles

Trade-off between low-overhead and high frequency of checkpointing

[FAST21] CheckFreq: Frequent, Fine-Grained DNN Checkpointing (from UT Austin & MSR)

14

J» CheckFreq: fine-grained and pipelined checkpointing

Checkpoint stalls: how to minimize cost of checkpoint?

—

2-phase DNN-aware checkpointing

Low checkpoint stalls

* Synchronous checkpointing introduces checkpoint stalls => Runtime overhead
* Low-cost checkpointing mechanism that is split into two pipelined operations:

e Snapshot() : Serialize and copy into a user-space buffer
e Persist() : Write out the serialized contents to d|sk

Training (GPU) 111

Training (GPU) [4 1 12 2 [2)i| 3 33[4 a |af:[5] 5 ;|6 6 |6

[Forward pass L Snapshotting
[] Backward pass L__! DisklO
[] Weight update] Checkpoint stall

Checkpoint (CPU) 1 [FERERICISESSIRUNN 4 FEESERT SRR

(c) Snapshot() and persist() pipelining
[FAST21] CheckFreq: Frequent, Fine-Grained DNN Checkpointing (from UT Austin & MSR)
I

15

J» CheckFreq: fine-grained and pipelined checkpointing

Checkpointing frequency: how often to checkpoint?

ﬂ automatically profiles metrics and determines frequency

Systematic online profiling

Initial checkpointing frequenc { Iteration time \ [Time for weight | [Time for GPU | [Time for CPU)
i Silbas y L) L update) _ snapshot() | snapshot())

[Available disk) f Tl) (" PeakGPU) (" TotalGPU)

Adaptive rate tuning (___throughput L P) [memory util | _ memory)

Manages interference from other jobs

[1 5826473
(a) Order of data items processed in an epoch

[1 582 | la2 15 |

(b) Resuming with current data iterator

Data invariant: how to resume correctly?

| | 6 4 7 3|

1 5 8 2
ﬂ epoch seeded psuedo-random transformations

(c) Resuming with CheckFreq data iterator
Figure 5: Resuming iterator state. When iterator state is
not resumable, an epoch might miss data items when job
| is interrupted (items 3,6,7 are missed in b). CheckFreq (c)
’ Malntaln data invariant ‘ ensures that training resumes from exactly where it left off.

l Resumable data iterator

[FAST21] CheckFreq: Frequent, Fine-Grained DNN Checkpointing (from UT Austin & MSR) 16

J» CheckFreq: fine-grained and pipelined checkpointing

Evaluation on 7 different DNNs:

1. CheckFreq reduces checkpoint stalls 2. CheckFreq reduces checkpoint overhead
H Baseline ® CheckFreq
—Synchronous —Persist() pipelining —CheckFreq 80
o 5 <70
-§ 4 2 60
.f; O 40
5 i I €30
% L Lol
= 0
TSN RN eSS SIS ER8 I NNNSNERER] 1o - - - I— — I- -
Iteration # Res50 ResNext Res18 Inception VGG16 DenseNet BERT
m Epoch-based | CheckFreq
(s) (s)
Res18 840 5
. Res50 2100 24
3. CheckFreq lowers recovery time: from hours to seconds VGG16 5700 25
ResNext 7080 32
DenseNet 2340 7
Inception 3000 27
BERT 4920 85
[FAST21] CheckFreq: Frequent, Fine-Grained DNN Checkpointing (from UT Austin & MSR) 17

» LightCheck: pipelined checkpoint to PM

 Existing methods (e.g., CheckFreq) still cannot
fully utilize the parallelism among computation,
communication, and checkpointing

LightCheck pipelines checkpointing with comp. and comm. in a layer-wise way

* Leverage the data dependency.

* Multiple nodes synchronize the model

parameters layer-by-layer during communication.

Execution flow of CheckFreq
/Training Stream \
B2 F3| F2 | F1|B3| B2 | B1
m-m l l I I I I I | Backward Propagation
[Glolalu]l [e [e e stan ->[T00
Che;:kpointing | CHK I III Forward Propagation
tream
- J
Execution flow of LightCheck ~ [] communication
(Training Stream
[83] 82 [B1] [F3] r2 [r1]83] B2 | B1] No Stall [[U7] update Parameters
[c3 Jua c2 Jua c1 ud [c3 fug c2 [uz c1 fudl
——— Checkpointing
Checkpointing
__ stream | chk3 | CHK2 | cHka |)

Fig. 3: The execution flows of LightCheck and CheckFreq.

[ICCD23] A Cost-Efficient Failure-Tolerant Scheme for Distributed DNN Training (from HUST)

18

2 LightCheck: pipelined checkpoint to PM

Persistent Memory (PM) has received extensive attention

* Large capacity with near-DRAM performance

* The unified virtual addressing (UVA) technique enables
zero-copy access over PCle between GPU and PM

* The asynchronous layer-wise checkpointing is done via

CUDA streams and events

Evaluation

wms LightCheck === CheckFreq +

~
6]

. .
. . .

0 , i ia o | A 1
v -

o ™ 15 30 =" 45 60 75 %0 105 120
Time (s)

Computation Utilization (%)
0
o

Fig. 8: The GPU computation utilizations of LightCheck and
CheckFreq.

[ICCD23] A Cost-Efficient Failure-Tolerant Scheme for Distributed DNN Training (from HUST)

GPU __ /—CPU ~N
1 1 I]] 1]
(L2 Cache) o (LLC)
A S ~
GPU Memory ~ PM DDR-T DRAM -I—LDDR'T
\ | Model | | Snapshot | -Checkpoint [-Snapshot
— . J
Total Training Time (h)
Models ; ;
No Failure | LightCheck | CheckFreq | torch.save
ResNet-18 10.7 10.9 11.1 11.2
VGG_16 67.5 69.7 72.3 73.7
Inception-V3 79.7 83.0 84.1 85.4
AlexNet 6.0 6.1 6.3 6.5
GPT-2 161.7 164.6 171.1 179.7
BERT 501.3 514.8 537.5 598.6
19

» GEMINI: hierarchical storage of checkpoints

Three main factors in checkpoint: 100 200 30 319 200)
) . T lteration
 checkpoint time - Fallure -,
_ il > *-----eeee- > @ Checkpoint
* checkpoint frequency - ckpt1 — ______ - @ Retrieval
)) The wasted time -
e retrieval time Time
Leverage the high bandwidth of CPU memory to achieve fast failure recovery!
* How to maximize the probability of a successful failure recovery from CPU memory?
* how to minimize the interference of checkpoint traffic with model training?
GEMNI RDMA
R Ay I eihnliolboliolioiolililinlicliolboiboliauiel foo-mmc-s . Failure recove module’s Local
E::;zc;l:zomt creation ‘ ‘ . .i e = . (Section 6) v i CPU Memory G?U AS— GPU
1(Sections 4&% @ ' : — ' Remote
E — : . :3 nu:seore ' CPU Memory PCle PCle
; i e og g !
. ' : ' Persistent Storage
: VS ... '} CPU - CPU
Estorggz g;:te:%:" E h h I VPC
e~ ’ Ierarc Ica Storage Communications

[SOSP23] Gemini: Fast Failure Recovery in Distributed Training with In-Memory Checkpoints (from Rice & Amazon) 20

2» GEMINI: hierarchical storage of checkpoints

* Maximize the probability of a successful failure recovery from CPU memory

* Store redundant checkpoints and proposes a placement strategy that maximizes the probability

..

:'Machine1‘i :'Machine3i ' Machine 1 Mach|ne4 EMachine1E EMachines '
(2] [=]: (== AEH S g
’LL‘- ’LL‘- |-|_,|-| IC.y i MaczeS;
ez i waohnaz i e hlﬂhai e
“Group 1 Group2 Ring e T Ring
(a) Group placement strategy. (b) Ring placement strategy. (c) Mixed placement strategy.
h f f h k ff ||<— iteration —>| |
PY 1Nt 1 1 1 1 Computation
Molnlmlze the |r.1t(.er erence or checkpoint tratfic conmucneod 0 0 0 0 8 0 0 D
with model training? T @oesane e
. . ..) Computaton [[} : I
* Design a deliberate communication scheduling conmmicaton]] 0! OO O! OO O
algorithm for interleaving these two types of traffic Checkpont l: — — s
to minimize the interference on training throughput. Computation | | | ;
. . I H . . Communlcat|onu L] U u u L] §_| U I_]
. Mgthod. online profllmg for severa-l |t-erat|ons of Sreckoui === }
training (e.g., 20) without checkpointing. @ s Time
D Computation Update D Icr)?:::ugnication E] c(:;::\(rzrl:l?:iig;tion
[SOSP23] Gemini: Fast Failure Recovery in Distributed Training with In-Memory Checkpoints (from Rice & Amazon) 21

» GEMINI: hierarchical storage of checkpoints

* Other difficulties and approaches (a) Baseline without N
checkpointing. Only training I:l
o comrpunications and Update >
DIffICU |ty are displayed. Time
D D X Sender

Extra GPU memory consumption

&

(b) The whole checkpoint GPU l:l |:|

is stored in GPU, causing

>
OOM errors. eru [[y e @

t of
CPU D Qute memory: Receiver

Approach !

1
communicatioh bubbles

Partitioning checkpoint 0 O / lD |
(c) Checkpoint is partitioned, ~GPU D D D |:| D

but GPU-to-CPU copies block

T —>
- checkpoint communications. GpU |I| E| lII E’lme / Training)
DIffICUlty CPU B B D] L] communication
Local GPU-to-CPU copy overhead. _ [P

communication

1
1
] [] ! GPU buffer
1 part 1
ﬂ (d) The GPU buffer is splited GPU D:l D:DID:D ; GPU-to-CPU
into two parts. Checkpointing + T > I:l copy
A h to CPU memory is pipelined. Ggpu 1)2/112)1)2/12 LI
pproac Update
cru [N [INREREN 5 /

Pipelining checkpoint transmission.

[SOSP23] Gemini: Fast Failure Recovery in Distributed Training with In-Memory Checkpoints (from Rice & Amazon) 22

» GEMINI: hierarchical storage of checkpoints

* Recovery training from failures

* software failures

* hardware failures
* replicas exist
* replicas not exist

e Evaluation

100 .
B No checkpoint
S 80 - GEMINI
)
£ 60
=
§ 40
©
L 20
0

GPT-2 100B RoBERTa 100B BERT 100B

Figure 7. The iteration time of three
large models without checkpoints and
with GEMINI.

Pl Machino | Machine 1 Machine 2’
, Cit- s)
Machine 4 : Machine 2 Machi4 Machine 2 KasriRa MGcHiaT N
- eckpoint from
p Checkpoint from
¢ local machine

= =]

Machine 3 Machine 3

0|

Machine 4’

Checkpoint from
remote machine

Machine 3

(b) GEmint for software failures. Check-
points are at local and the retrieval time

(c) GEmiNI for failures with two machines replaced.
The newly added machines retrieve checkpoints

(a) Existing solutions for any types of fail-
ures. All checkpoints are always retrieved

from the remote persistent storage. is negligible. from alive machines.
1.0 e e o o o o o o - 1Ty} | e e e e
2 . o
% g 08-\.--*. E o 0.75 \".
L 5 i L LTI [\.\
150 .g E o Nofailure . ~ < g S = No failure ~
' Net. idle time w/o ckpt 3 S SFrawman N, 2 05 = Stawman oG -
12.5| @z GEMINI cpkt time i *+ =+ HighFreq ~. - 5 «+ =+ HighFreq Yo
NN Net. idle time w. GEQM . = Gemini . — Gemini '~
g 100 \\ \ \\ 2 4 6 8 200 400 600 800 1000
> 75 \ § x Number of failures (per day) Number of instances
£
E 5.0 \ \
s § § \i (a) Different failure rates. (b) Different instance numbers.
0-0°GPT2 1008 RoBERTa 100B BERT 100B Failure Restart warmup
ckpt1 ckpt2 ckpt (@53
L

Figure 8. The network idle time of
three large models without checkpoints
and with GEMINL

1] S
lter 3 Iter4 Training

]] 1 L ...
lter1 Iter2 Iter3 lter4 / \

Failure detection Checkpoint
(15s) serialization (162s)

@ Checkpoint
@ Retrieval

[SOSP23] Gemini: Fast Failure Recovery in Distributed Training with In-Memory Checkpoints (from Rice & Amazon) 23

2» SWIFT: update-undo and logging-based recovery

* The overhead of checkpointing is high

* Crash-consistency problem: parameters from some

. Failure-free training throughput Recovery time
workers are updated while the others are not. T — Giovl coe. 200 S—
0| == CheckFreq Bl [nitialization time
= Elastic Horovo -.150
508 que i p
UOA 0.6 Eloo
. . 0.2 0.5 50
Swift Design: s0__53
007360 350 400 450 500 550 O Elastlc
Throughput (images/s) Global ckpt. CheckFreq Horovod Swift
* Update-undo (replica available): Figure 1. Replication-based recovery for Wide-ResNet-50.
e survivors undo the update for the updated para meters L o Failure-free training throughput Recovery time (PR = Parallel Recovery)
Loseine-based i T 08| — cravatckpe o m= iitalzation time
[- . = L0ggin roups ~150
ogging-based recovery (replica unavailable): £ 05| Logging (8 roupss e
. Sya 0.6, £100
* is done asynchronously s . E ! N
. 9 9770
« records intermediate communication (i.e., intermediate oom—mEEERL——" | - B0 M|
. Throughput (tokens/s) Global ckpt. 16 groups 8 groups 16 groups
activations in the forward pass and the gradients in the . , WIPR
Figure 2. Logging-based recovery for BERT-128.
backward pass)
* replacement workers download logs for recovery
[PPoPP23] Swift: Expedited Failure Recovery for Large-scale DNN Training (from HKU & OneFlow) 24

» Check-N-Run: reduce checkpoint size

* Checkpoints of large-scale recommendation system (RS) is essential

3.5
_ _ .g 3
wv
25
°
<)
. s 2
[Feature Interaction J -
2 1.5
1] | 5
Bottom Emb Emb | .. | Emb 5
MLP Table | | Table Table =05
| | | | 0
Dense Sparse Sparse Sparse H1 H2 H3 H4
Features Feature Feature Feature Ti
ime
e Chall f checkpointi i i
allenges ot checkpointing Recommendation Model Architecture
60 X 10 min A 20 min 30 min @ 60 min
40
§ 40 § 30 ® ° ® hd *
] © A A
'8 o° 20 AAAAAAAAAAAAAAA
£ 20 g xxxxxxxx X XX XXy XX X X X X X X X XXX X X X X X X o
é %5 10
S 0 R,
2 4 6 8 10 50 100 150 200 250 300 350
Samples (in billions) Time (mintues)

at each iteration only a tiny fraction of the model is updated

[NSDI22] Check-N-Run: a Checkpointing System for Training Deep Learning Recommendation Models (from Facebook) 25

I Check-N-Run: reduce checkpoint size

 Strategy 1: differential checkpointing N

* Motivation: model accesses are sparse % %
Dataset |~ ‘ : 'nelr
* One-Shot Differential Checkpoint el Node
* Consecutive Incremental Checkpoint e Storage:
. . . . B One-shot baseline M Intermittent baseline Consecutive increment B One-shotbaseline B Intermittent baseline Consecutive increment
* Intermittent Differential Checkpoint 125 o
° 100 g 30
2 75 “
. . . 3 3 200
» Strategy 2: checkpoint quantization £ o T “ " " " | | “ “
g 25 f
e Compress checkpoint without degrading T i i R S S BB T T T Tl
tra'n'ng accu racy Interval number Differential Strategies Interval number
¢ Unlform qua ntlzatlon Average Bandwidth XXX% Storage Capacity C—3
0.006 18X T T T T
* Non-uniform quantization using k-means ~ ** et]
. . . . E ' ‘ g 12X - :ii: .
* Adaptive uniform quantization T e B1XT .
EZ-ZZ Adaptive uniform § gi: Eig %;i :
i | il g & -
* Strategy 3: Decoupling o BORORDEOETE - 2
Quantization Bit-width 0X 1L<3 3<L-<2(.) 20 '< L
» Separate snapshot and persist operations.] i
Quantization Strategies Overall Results
NSDI22] Check-N-Run: a Checkpointing System for Training Deep Learning Recommendation Models (from Facebook) 26
P

Outline

3» CPR: trade-off between overhead and accuracy

100

mmm Rescheduling

mEm Chkpt load Overhead
B Chkpt save

mam Lost time Of

80

Failures are frequent in large-scacle model training

60

Portion (%)

* Full recovery will lead to the lost of computation - TR 1]
° 0 Mean 75 90 recovery
 Partial recovery can harm the model accuracy "Quanthe
0.804 s x| Accuracy
S Os00 SN of
Can we balance between the overhead and the accuracy?
0792 recovery
5000 15000# iteratiZ;(\)gO 35000
0.5T:
Portion of Lost Samples (PLS) E|PLS] = v
P T'raitNemb

* the portion of the training data samples whose effect on the model was lost due to a failure

e s a function of checkpoint saving interval, the failure rate and the number of parameter server nodes

e can be used as a metrics to trade-off the performance overhead and the model accuracy

CPR: Understanding and Improving Failure Tolerant Training for Deep Learning Recommendation with Partial Recovery (from Facebook) 28
T —,e,,,,

» CPR: trade-off between overhead and accuracy

. 4 N
CPR selects between full recovery and partial PLS=0.1 [/ .
recovery based on the benefit analysis recovery AW
FuII . S ~§f;)
/ recovery R
_ MFU/SSU
* PLS-based checkpomtlng User specifies CPR selects strategy checkpoint
)) . target PLS & chkpt saving interval
* first choose the saving frequency based on specified PLS
- - TO a Ts(l’l(’ TO at
« trade-off between the overheads of two strategies Ototat ~ Osave 7 +(Otoaat =5 +Ores) Ifff_l' (1)
* if the expected benefit is small, choose full recovery T T
H H ()fofal par ~ ()9(11 (’M (()load + ()709)L01 (2)
» otherwise, choose partial recovery -t Tsnve Tt ai
* Frequency-based prioritization o500
* With the limited I/O bandwidth, prioritizing to save important iosoz | | 1] I
updates can make the final model quality to improve. a
* SCAR: prioritize saving parameters with larger changes = l] giﬁjgg‘”ai
* CPR-MFU: prioritize saving the most-frequently-used parameters £2 L
30 = = o
 CPR-SSU: sub-sample and prioritize used embedding vectors remooe . e

The trade-off in CPR
CPR: Understanding and Improving Failure Tolerant Training for Deep Learning Recommendation with Partial Recovery (from Facebook)

29
]

3 Conclusion

Redundant Computation

* Pipeline RCin the bubble time to
avoid high overhead

* Leverage the inherent redundancy
in DP

* Decoupling the planning from the
execution

Optimized Checkpointing

Pipeline checkpointing with

computation and communication.

Leverage hierarchical storage to
improve checkpointing frequency
Avoid the lost of computation
Leverage partial features and

guantization to reduce size

Approximation

Trade-off between the
overhead of full recovery and

accuracy of partial recovery

I Conclusion

Future direction

Y
(Submit LLM training job] [Submit LLM training job]
_________ 2 2 S 2
Host 1 Host 2 Host 3 Host 2 Host 3 :
. | worker ——> worker ——> worker launcher P launcher §
worker ——> worker ——5> worker I A
N G : o I || save ckpt ckpt H Co I save ckpt ckpt H '
:) ' worker % Dot worker F———p

checker f---------mmmmnonoos : checker f--------rmmmmomno :
: AnomalyDetector Freeseey
‘ . : ‘ : host1 m !
i Any worker failed, kill all workers ; . m : [vl
5 J ’ { ; cleaning training detection J<:,___'_".___‘ E
T — o | (o) — — o

. | worker —> worker ——> worker

Manually check and resubmit .

Automated anomaly detection Efficient failure recovery

TRANSOM: An Efficient Fault-Tolerant System for Training LLMs 31

—_—
=L

——

s Bl Jﬁ you!

RON RUN SHAW SCIENCE BUILDING

"

©

i R A g

_,...4
/7

o

kP XK F
e Chinese University of Hong Kong

(ARISE

Automated Reliable Intelligent
Software Engineering

